Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098501    DOI: 10.1088/1674-1056/acc8c0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analytical workload dependence of self-heating effect for SOI MOSFETs considering two-stage heating process

Yi-Fan Li(李逸帆)1,2,3, Tao Ni(倪涛)1,3, Xiao-Jing Li(李晓静)1,3, Juan-Juan Wang(王娟娟)1,3, Lin-Chun Gao(高林春)1,3, Jian-Hui Bu(卜建辉)1,3, Duo-Li Li(李多力)1,3, Xiao-Wu Cai(蔡小五)1,3, Li-Da Xu(许立达)1,2,3, Xue-Qin Li(李雪勤)1,2,3, Run-Jian Wang(王润坚)1,2,3, Chuan-Bin Zeng(曾传滨)1,3,†, Bo Li(李博)1,3, Fa-Zhan Zhao(赵发展)1,3, Jia-Jun Luo(罗家俊)1,3, and Zheng-Sheng Han(韩郑生)1,2,3
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Dynamic self-heating effect (SHE) of silicon-on-insulator (SOI) MOSFET is comprehensively evaluated by ultrafast pulsed I-V measurement in this work. It is found for the first time that the SHE complete heating response and cooling response of SOI MOSFETs are conjugated, with two-stage curves shown. We establish the effective thermal transient response model with stage superposition corresponding to the heating process. The systematic study of SHE dependence on workload shows that frequency and duty cycle have more significant effect on SHE in first-stage heating process than in the second stage. In the first-stage heating process, the peak lattice temperature and current oscillation amplitude decrease by more than 25 K and 4% with frequency increasing to 10 MHz, and when duty cycle is reduced to 25%, the peak lattice temperature drops to 306 K and current oscillation amplitude decreases to 0.77%. Finally, the investigation of two-stage (heating and cooling) process provides a guideline for the unified optimization of dynamic SHE in terms of workload. As the operating frequency is raised to GHz, the peak temperature depends on duty cycle, and self-heating oscillation is completely suppressed.
Keywords:  self-heating effect (SHE)      silicon-on-insulator (SOI) MOSFETs      thermal transient response      workload  
Received:  10 January 2023      Revised:  13 March 2023      Accepted manuscript online:  30 March 2023
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52161160330 and U2230402).
Corresponding Authors:  Chuan-Bin Zeng     E-mail:  chbzeng@ime.ac.cn

Cite this article: 

Yi-Fan Li(李逸帆), Tao Ni(倪涛), Xiao-Jing Li(李晓静), Juan-Juan Wang(王娟娟), Lin-Chun Gao(高林春), Jian-Hui Bu(卜建辉), Duo-Li Li(李多力), Xiao-Wu Cai(蔡小五), Li-Da Xu(许立达), Xue-Qin Li(李雪勤), Run-Jian Wang(王润坚), Chuan-Bin Zeng(曾传滨), Bo Li(李博), Fa-Zhan Zhao(赵发展), Jia-Jun Luo(罗家俊), and Zheng-Sheng Han(韩郑生) Analytical workload dependence of self-heating effect for SOI MOSFETs considering two-stage heating process 2023 Chin. Phys. B 32 098501

[1] Chen Z F, Sun L L, Liu J, Su G D and Zhou W Y 2018 IEEE Trans. Electron. Dev. 65 4232
[2] Zhang X, Mehr P, Vasileska D and Thornton T 2021 5th IEEE Electron Devices Technology & Manufacturing Conference, April 8-11, Chengdu, China, p. 1
[3] Sun J, Li X J, Sun Y B and Shi Y L 2020 IEEE Trans. Dev. Mater. Rel. 20 119
[4] Kumar U S and Rao V R 2016 IEEE Trans. Electron. Dev. 63 280
[5] Cao L and Liu H X 2012 Acta Phys. Sin 61 177301 (in Chinese)
[6] Makovejev S, Olsen S H, Kilchytska V and Raskin J 2013 IEEE Trans. Electron. Dev. 60 1844
[7] Tenbroek B M, Lee M S L, Redman-White W, Bunyan J T and Uren M J 1996 IEEE Trans. Electron. Dev. 43 2240
[8] Zhang Y, Dong G, Yang Y T, Wang N, Wang F J and Liu X X 2013 Acta Phys. Sin. 62 016601 (in Chinese)
[9] Schwitter B K, Parker A E, Mahon S J and Heimlich M C 2018 13th European Microwave Integrated Circuits Conference, September 23-25, Madrid, Spain, p. 218
[10] Nguyen M, On N, Ji H, Nguyen A H, Choi S, Cheon J, Yu K, Cho S, Kim J H, Kim S, Jeong J and Choi R 2018 IEEE Trans. Electron. Dev. 65 2492
[11] Beppu N, Oda S and Uchida K 2012 International Electron Devices Meeting, December 10-13, San Francisco, USA, p. 28.2.1
[12] Wang J J, Zeng C B, Li J J, Ni T, Li X J, Li D L and Luo J J 2021 Semi. Tech. 46 164
[13] Zhang L N, Song D B, Xiao Y, Lin X N and Chan M S 2018 IEEE Jour Electron. Dev. 6 291
[14] Chen W Y, Cai L L, Zhao K, Zhang X, Liu X Y and Du G 2018 IEEE Trans. Electron. Dev. 65 3633
[15] Wahab M A, Shin S and Alam M A 2015 IEEE Trans. Electron. Dev. 62 3595
[16] Zhang G C, Feng S W, Zhou Z, Li J W and Guo C S 2011 Chin. Phys. B 20 027202
[17] Van Santen V M, Amrouch H, Kumari P and Henkel J 2020 IEEE Trans. Circuits and Systems II: Express Briefs 67 1949
[18] Myeongi I, Son D, Kim H and Shin H 2019 IEEE Trans. Electron. Dev. 66 4631
[19] Mukhopadhyay S, Kundu A, Lee Y W, Hsieh H D, Huang D S, Horng J J, Chen T. H, Lee J H, Tsai Y S, Lin C K, Lu R and He J 2018 IEEE International Electron Devices Meeting, December 1-5, San Francisco, USA, p. 17.4.1
[20] Jiang H, Shin S H, Liu X Y, Zhang X and Alam M A 2017 IEEE Electron. Dev. Lett. 38 430
[21] Venkateswarlu S and Nayak K 2020 IEEE Trans. Electron. Dev. 67 1530
[22] Zhao Y and Qu Y M 2019 IEEE Jour Electron. Dev. 7 829
[23] Li Y F, Ni T, Wang J J, Gao L C, Li X J, Li J J, Bu J H, Li D L, Xu L D, Wang R J, Zeng C B, Wang Z J, Li B, Zhao F Z and Luo J J 2022 IEEE Trans. Electron. Dev. 69 5430
[24] Yan J Y, Jan S R, Peng Y J, L in H H, Wan W K, Huang, Y H, Hung B, Chan K T, Huang M, Yang M T and Liu C W 2016 IEEE International Electron Devices Meeting, December 3-7, San Francisco, USA, p. 35.6.1
[25] Zhu Z M and Liu S B 2012 Chin. Phys. B 21 028401
[26] Székely V and Szalai A 2011 17th International Workshop on Thermal Investigations of ICs and Systems, September 27-29, Paris, France, p. 1
[1] SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
Jin-Ping Zhang(张金平), Wei Chen(陈伟), Zi-Xun Chen(陈子珣), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(11): 118502.
[2] Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer
Xuerui Niu(牛雪锐), Bin Hou(侯斌), Meng Zhang(张濛), Ling Yang(杨凌), Mei Wu(武玫), Xinchuang Zhang(张新创), Fuchun Jia(贾富春), Chong Wang(王冲), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(10): 108101.
[3] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[4] An accurate analytical surface potential model of heterojunction tunnel FET
Yunhe Guan(关云鹤), Huan Li(黎欢), Haifeng Chen(陈海峰), and Siwei Huang(黄思伟). Chin. Phys. B, 2023, 32(10): 108506.
[5] Model and data of optically controlled tunable capacitor in silicon single-photon avalanche diode
Mei-Ling Zeng(曾美玲), Yang Wang(汪洋), Xiang-Liang Jin(金湘亮), Yan Peng(彭艳), and Jun Luo(罗均). Chin. Phys. B, 2023, 32(7): 078502.
[6] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[7] An integrated split and dummy gates MOSFET with fast turn-off and reverse recovery characteristics
Weizhong Chen(陈伟中), Liuting Mou(牟柳亭), Haifeng Qin(秦海峰), Hongsheng Zhang(张红升), and Zhengsheng Han(韩郑生). Chin. Phys. B, 2023, 32(6): 067303.
[8] Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(5): 058501.
[9] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[10] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[11] Optimal impurity distribution model and experimental verification of variation of lateral doping termination
Min Ren(任敏), Chang-Yu Ye(叶昶宇), Jian-Yu Zhou(周建宇), Xin Zhang(张新), Fang Zheng(郑芳), Rong-Yao Ma(马荣耀), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(4): 048505.
[12] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[13] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[14] Effect of temperature on heavy ion-induced single event transient on 16-nm FinFET inverter chains
Li Cai(蔡莉), Ya-Qing Chi(池雅庆), Bing Ye(叶兵), Yu-Zhu Liu(刘郁竹), Ze He(贺泽), Hai-Bin Wang(王海滨), Qian Sun(孙乾), Rui-Qi Sun(孙瑞琪), Shuai Gao(高帅), Pei-Pei Hu(胡培培), Xiao-Yu Yan(闫晓宇), Zong-Zhen Li(李宗臻), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(4): 046101.
[15] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
No Suggested Reading articles found!