Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064209    DOI: 10.1088/1674-1056/ac9180
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-event-transient effect in nanotube tunnel field-effect transistor with bias-induced electron-hole bilayer

Xue-Ke Wang(王雪珂)1, Ya-Bin Sun(孙亚宾)1,†, Zi-Yu Liu(刘子玉)2,‡, Yun Liu(刘赟)1, Xiao-Jin Li(李小进)1, and Yan-Ling Shi(石艳玲)1
1 Department of Electrical Engineering, East China Normal University, Shanghai 200241, China;
2 School of Microelectronics, Fudan University, Shanghai 200433, China
Abstract  The single event transient (SET) effect in nanotube tunneling field-effect transistor with bias-induced electron-hole bilayer (EHBNT-TFET) is investigated by 3-D TCAD simulation for the first time. The effects of linear energy transfer (LET), characteristic radius, strike angle, electrode bias and hit location on SET response are evaluated in detail. The simulation results show that the peak value of transient drain current is up to 0.08 mA for heavy ion irradiation with characteristic radius of 50 nm and LET of 10 MeV·cm2/mg, which is much higher than the on-state current of EHBNT-TFET. The SET response of EHBNT-TFET presents an obvious dependence on LET, strike angle, drain bias and hit location. As LET increases from 2 MeV·cm2/mg to 10 MeV·cm2/mg, the peak drain current increases monotonically from 0.015 mA to 0.08 mA. The strike angle has an greater impact on peak drain current especially for the smaller characteristic radius. The peak drain current and collected charge increase by 0.014 mA and 0.06 fC, respectively, as the drain bias increases from 0.1 V to 0.9 V. Whether from the horizontal or the vertical direction, the most sensitive hit location is related to wt. The underlying physical mechanism is explored and discussed.
Keywords:  heavy ion strike      EHBNT-TFET      single event transient (SET)      transient drain current  
Received:  25 April 2022      Revised:  06 September 2022      Accepted manuscript online:  13 September 2022
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 61974056), the Natural Science Foundation of Shanghai (Grant No. 19ZR1471300), Shanghai Science and Technology Innovation Action Plan (Grant No. 19511131900), and Shanghai Science and Technology Explorer Plan (Grant No. 21TS1401700).
Corresponding Authors:  Ya-Bin Sun, Zi-Yu Liu     E-mail:  ybsun@ee.ecnu.edu.cn;liuziyu@fudan.edu.cn

Cite this article: 

Xue-Ke Wang(王雪珂), Ya-Bin Sun(孙亚宾), Zi-Yu Liu(刘子玉), Yun Liu(刘赟), Xiao-Jin Li(李小进), and Yan-Ling Shi(石艳玲) Single-event-transient effect in nanotube tunnel field-effect transistor with bias-induced electron-hole bilayer 2023 Chin. Phys. B 32 064209

[1] Taur Y2002 IBM J. Res. Dev. 46 213
[2] Seabaugh A C and Zhang Q2010 Proc. IEEE 98 2095
[3] Asra R, Shrivastava M, Murali K V R M, Pandey R K, Gossner H and Rao V R2011 IEEE Trans. Electron Dev. 58 1855
[4] Datta S, Liu H and Narayanan V2014 Microelectron. Reliab. 54 861
[5] Raushan M A, Alam N and Siddiqui M J2018 IEEE Trans. Electron. Dev. 65 4701
[6] Boucart K and Ionescu A M2007 IEEE Trans. Electron Dev. 54 1725
[7] Kim S W, Kim H W, Liu T J K, Choi W Y and Park B G2016 IEEE Trans. Electron. Dev. 63 1774
[8] Seo J H, Yoon Y J, Lee S, Lee J H, Cho S and Kang I M2015 Curr. Appl. Phys. 15 208
[9] Musalgaonkar G, Sahay S, Saxena R S and Kumar M J2019 IEEE Trans. Electron. Dev. 66 2809
[10] Lattanzio L, Michielis L D and Ionescu A M2012 Solid State Electron. 74 85
[11] Wang X, Sun Y, Liu Z, Liu Y, Li X and Shi Y2022 Silicon 14 9071
[12] Qin J, Chen S, Liu B, Liu Z, Liang B and Du Y2011 Chin. Phys. B 20 129401
[13] Moreno E G, Picos R, Isern E, Roca M, Bota S and Suenaga K2009 IEEE Trans. Nucl. Sci. 56 2910
[14] Dodd P E, Shaneyfelt M R, Schwank J R and Felix J A2010 IEEE Trans. Nucl. Sci. 57 1747
[15] Kim J, Lee J S, Han J W and Meyyappan M2018 IEEE Electron. Dev. Lett. 39 1840
[16] Kaushal G, Rathod S S, Maheshwaram S, Manhas S K, Saxena A K and Dasgupta S2012 IEEE Trans. Electron. Dev. 59 1563
[17] Munteanu D2008 IEEE Trans. Nucl. Sci. 55 1854
[18] Li D, Liu T, Zhao P, Wu Z, Wang T and Liu J2022 Chin. Phys. B 31 056106
[19] Manohari R G, Nagarajan K K and Srinivasan R2017 Int. Conf. On Nextgen Electronic Technologies: Silicon to Software, Mar. 23-25, 2017, Chennai, India, p. 172
[20] Wu Y and Takahashi Y 2017 ECS Meeting Abstracts 2 1143
[21] Wang Q, Liu H, Wang S and Chen S2018 IEEE Trans. Nucl. Sci. 65 2250
[22] Chong C, Liu H, Wang S, Chen S and Xie H2021 Micromachines 12 609
[23] Synopsys Inc. 2018 Sentaurus Device User Guide
[24] Fahad H M and Hussain M M2013 IEEE Trans. Electron. Dev. 60 1034
[25] Sun Y, Shao J, Liu Z, Li X, Liu Y and Shi Y2021 IEEE Trans. Electron. Dev. 68 6001
[26] Tian G, Bi J, Xu G, Xi K, Yang X, Yin H, Xu Q and Wang W2020 Semicond. Sci. Technol. 35 105010
[27] Liu H, Cotter M, Datta S and Narayanan V2014 IEEE Trans. Device Mater. Reliab. 14 732
[28] Liu Z, Chen S, Chen J, Qin J and Liu R2012 Chin. Phys. B 21 099401
[1] A single-event transient induced by a pulsed laser in a silicon-germanium heterojunction bipolar transistor
Sun Ya-Bin (孙亚宾), Fu Jun (付军), Xu Jun (许军), Wang Yu-Dong (王玉东), Zhou Wei (周卫), Zhang Wei (张伟), Cui Jie (崔杰), Li Gao-Qing (李高庆), Liu Zhi-Hong (刘志弘), Yu Yong-Tao (余永涛), Ma Ying-Qi (马英起), Feng Guo-Qiang (封国强), Han Jian-Wei (韩建伟). Chin. Phys. B, 2013, 22(5): 056103.
[2] Dual role of multiple-transistor charge sharing collection in single-event transient
Guo Yang (郭阳), Chen Jian-Jun (陈建军), He Yi-Bai (何益百), Liang Bin (梁斌), Liu Bi-Wei (刘必慰). Chin. Phys. B, 2013, 22(4): 046103.
No Suggested Reading articles found!