Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027301    DOI: 10.1088/1674-1056/ad19d4
Special Issue: SPECIAL TOPIC — Post-Moore era: Materials and device physics
SPECIAL TOPIC—Post-Moore era: Materials and device physics Prev   Next  

Biodegradable and flexible l-carrageenan based RRAM with ultralow power consumption

Jing-Yao Bian(卞景垚)1, Ye Tao(陶冶)1,†, Zhong-Qiang Wang(王中强)1,2, Xiao-Ning Zhao(赵晓宁)1, Ya Lin(林亚)1,2, Hai-Yang Xu(徐海阳)1,2,‡, and Yi-Chun Liu(刘益春)1,2
1 Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China;
2 National Demonstration Center for Experimental Physics Education, Northeast Normal University, Changchun 130024, China
Abstract  Transient memories, which can physically disappear without leaving traceable remains over a period of normal operation, are attracting increasing attention for potential applications in the fields of data security and green electronics. Resistive random access memory (RRAM) is a promising candidate for next-generation memory. In this context, biocompatible $\iota $-carrageenan ($\iota $-car), extracted from natural seaweed, is introduced for the fabrication of RRAM devices (Ag/$\iota $-car/Pt). Taking advantage of the complexation processes between the functional groups (C-O-C, C-O-H, et al.) and Ag metal ions, a lower migration barrier of Ag ions and a high-speed switching (22.2 ns for SET operation/26 ns for RESET operation) were achieved, resulting in an ultralow power consumption of 56 fJ. And the prepared Ag/$\iota $-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility. In addition, thanks to the hydrophilic groups of $\iota $-car molecule, the RRAM devices can be rapidly dissolved in deionized (DI) water within 13 minutes, showing excellent transient characteristics. This work demonstrates that $\iota $-car based RRAM devices have great potential for applications in secure storage applications, flexible electronics and transient electronics.
Keywords:  RRAM      transient electronics      $\iota $-carrageenan      ultralow power consumption  
Received:  08 October 2023      Revised:  02 November 2023      Accepted manuscript online:  02 January 2024
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  77.84.Jd (Polymers; organic compounds)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: This work is supported financially by the National Key Research and Development Program of China (Grant No. 2023YFB4402301), the National Science Fund for Distinguished Young Scholars (Grant No. 52025022), the National Natural Science Foundation of China (Grant Nos. U19A2091, 62004016, 51732003, 52072065, 11974072, 52372137, and 52272140), the “111” Project (Grant No. B13013), the Fundamental Research Funds for the Central Universities (Grant Nos. 2412022QD036 and 2412023YQ004) and the funding from Jilin Province (Grant Nos. 20210201062GX, 20220502002GH, 20230402072GH, 20230101017JC, and 20210509045RQ).
Corresponding Authors:  Ye Tao, Hai-Yang Xu     E-mail:  taoy506@nenu.edu.cn;hyxu@nenu.edu.cn

Cite this article: 

Jing-Yao Bian(卞景垚), Ye Tao(陶冶), Zhong-Qiang Wang(王中强), Xiao-Ning Zhao(赵晓宁), Ya Lin(林亚), Hai-Yang Xu(徐海阳), and Yi-Chun Liu(刘益春) Biodegradable and flexible l-carrageenan based RRAM with ultralow power consumption 2024 Chin. Phys. B 33 027301

[1] Kenry, Yeo J C and Lim C T 2016 Microsyst. Nanoeng. 2 16043
[2] Bhatia M and Sood S K 2016 J. Med. Syst. 40 190
[3] Shim J S, Rogers J A and Kang S K 2021 Mater. Sci. Eng. R Rep. 145 100624
[4] Kiddee P, Naidu R and Wong M H 2013 Waste Manage 33 1237
[5] Gollakota A R K, Gautam S and Shu C M 2020 J. Environ. Manage 261 110234
[6] Feng S X, Cao S T, Tian Z S, Zhu H Y and Kong D S 2019 ACS Appl. Mater. Interfaces 11 45844
[7] Hernandez H L, Kang S K, Lee O P, Hwang S W, Kaitz J A, Inci B, Park C W, Chung S J, Sottos N R, Moore J S, Rogers J A and White S R 2014 Adv. Mater. 26 7637
[8] Park C W, Kang S K, Hernandez H L, Kaitz J A, Wie D S, Shin J, Lee O P, Sottos N R, Moore J S, Rogers J A and White S R 2015 Adv. Mater. 27 3783
[9] Lee C H, Kang S K, Salvatore G A, Ma Y J, Kim B H, Jiang Y, Kim J S, Yan L Q, Wie D S, Banks A, Oh S J, Feng X, Huang Y G, Troester G and Rogers J A 2015 Adv. Funct. Mater. 25 5100
[10] Park S P, Tak Y J, Kim H J, Lee J H, Yoo H and Kim H J 2018 Adv. Mater. 30 1800722
[11] Xu J Q, Zhao X N, Wang Z Q, Xu H Y, Hu J L, Ma J G and Liu Y C 2018 Small 15 1803970
[12] Sun B, Zhu S H, Mao S S, Zheng P P, Xia Y D, Yang F, Lei M and Zhao Y 2018 J. Colloid Interface Sci. 513 774
[13] Yan X B, Li X Y, Zhou Z Y, Zhao J H, Wang H, Wang J J, Zhang L, Ren D L, Zhang X, Chen J S, Lu C, Zhou P and Liu Q 2019 ACS Appl. Mater. Interfaces 11 18654
[14] Ji X L, Song L, Zhong S, Jiang Y, Lim K G, Wang C and Zhao R 2018 J. Phys. Chem. C 122 16909
[15] Hosseini N R and Lee J S 2015 Adv. Funct. Mater. 25 5586
[16] Lin Q Q, Hu W, Zang Z G, Zhou M, Du J, Wang M, Han S and Tang X S 2018 Adv. Electron. Mater. 4 1700596
[17] Jeng H Y, Yang T C, Li Y, Grote J G, Chen H L and Hung Y C 2018 Org. Electron. 54 216
[18] Kook G, Jeong S, Kim M K, Lee S, Choi N and Lee H J 2020 Adv. Mater. Technol. 5 1900991
[19] Su'ait M S, Ahmad A, Hamzah H and Rahman M Y A 2009 J. Phys. D: Appl. Phys. 42 055410
[20] Kim M K and Lee J S 2018 ACS Nano 12 1680
[21] Wang Z Q, Li X H, Xu H Y, Wang W, Yu H, Zhang X T, Liu Y X and Liu Y C 2010 J. Phys. D: Appl. Phys. 43 385105
[22] Shi K X, Xu H Y, Wang Z Q, Zhao X N, Liu W Z, Ma J G and Liu Y C 2017 Appl. Phys. Lett. 111 223505
[23] Zhao X N, Wang Z Q, Li W T, Sun S W, Xu H Y, Zhou P, Xu J Q, Lin Y and Liu Y C 2020 Adv. Funct. Mater. 30 1910151
[24] Zhang T, Yin M H, Xu C M, Lu X Y, Sun X H, Yang Y C and Huang R 2017 Nanotechnology 28 455202
[25] Sun K X, Wang Q R, Zhou L, Wang J J, Chang J J, Guo R, Tay B K and Yan X B 2023 Sci. China Mater. 66 2013
[26] Ginnaram S, Qiu J T and Maikap S 2020 ACS Omega 5 7032
[27] Zhang X H, Zhao X N, Shan X Y, Tian Q L, Wang Z Q, Lin Y, Xu H Y and Liu Y C 2021 ACS Appl. Mater. Interfaces 13 28555
[28] Wang J R, Zhuge X and Zhuge F 2021 Sci. Technol. Adv. Mater. 22 326
[29] Dutta M, Senapati A, Ginnaram S and Maikap S 2020 Vacuum 176 109326
[30] Lin Q Q, Hao S L, Hu W, Wang M, Zang Z G, Zhu L N, Du J and Tang X S 2019 J. Mater. Chem. C 7 3315
[31] Abbas Y, Dugasani S R, Raza M T, Jeon Y R, Park S H and Choi C 2019 Nanotechnology 30 335203
[32] Park S P, Tak Y J, Kim H J, Lee J H, Yoo H and Kim H J 2018 Adv. Mater. 30 1800722
[33] Sun Y, Xu H, Liu S, Song B, Liu H J, Liu Q and Li Q J 2018 IEEE Electron. Device Lett. 39 492
[34] Chitra R, Sathya P, Selvasekarapandian S and Meyvel S 2020 Mater. Res. Express 7 015309
[35] Kang Y H, Lee T I, Moon K J, Moon J W, Hong K, Cho J H, Lee W and Myoung J M 2013 Mater. Chem. Phys. 138 623
[36] He K N, Kong X S and Liu C S 2020 Comput. Mater. Sci. 184 109948
[37] Sundell P G, Björketun M E and Wahnström G 2007 Phys. Rev. B 76 094301
[38] Seung H M, Kwon K C, Lee G S and Park J G 2014 Nanotechnology 25 435204
[39] Huang Y H, Chen H A, Wu H H and Hsieh T E 2015 J. Appl. Phys. 117 014505
[40] Ling H F, Tan K M, Fang Q Y, Xu X S, Chen H, Li W W, Liu Y F, Wang L Y, Yi M D, Huang R, Qian Y, Xie L H and Huang W 2017 Adv. Electron. Mater. 3 1600416
[41] Zhao X N, Wang Z Q, Xie Y, Xu H Y, Zhu J X, Zhang X T, Liu W Z, Yang G C, Ma J G and Liu Y C 2018 Small 14 1801325
[42] Kim M K and Lee J S 2018 ACS Appl. Mater. Interfaces 10 10280
[43] Yang Y, Hu H, Zhou C H, Xu S, Sebo B and Zhao X Z 2011 J. Power Sources 196 2410
[44] Ji S L, He W W, Wang K, Ran Y X and Ye C H 2014 Small 10 4951
[1] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[2] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[3] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[4] Analysis of tail bits generation of multilevel storage in resistive switching memory
Jing Liu(刘璟), Xiaoxin Xu(许晓欣), Chuanbing Chen(陈传兵), Tiancheng Gong(龚天成), Zhaoan Yu(余兆安), Qing Luo(罗庆), Peng Yuan(袁鹏), Danian Dong(董大年), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2018, 27(11): 118501.
[5] Impact of variations of threshold voltage and hold voltage of threshold switching selectors in 1S1R crossbar array
Yu-Jia Li(李雨佳), Hua-Qiang Wu(吴华强), Bin Gao(高滨), Qi-Lin Hua(化麒麟), Zhao Zhang(张昭), Wan-Rong Zhang(张万荣), He Qian(钱鹤). Chin. Phys. B, 2018, 27(11): 118502.
[6] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[7] Thermal effect on endurance performance of 3-dimensional RRAM crossbar array
Nianduan Lu(卢年端), Pengxiao Sun(孙鹏霄), Ling Li(李泠), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2016, 25(5): 056501.
[8] Resistive switching characteristic and uniformity of low-power HfOx-based resistive random access memory with the BN insertion layer
Shuai Su(苏帅), Xiao-Chuan Jian(鉴肖川), Fang Wang(王芳), Ye-Mei Han(韩叶梅), Yu-Xian Tian(田雨仙), Xiao-Yang Wang(王晓旸), Hong-Zhi Zhang(张宏智), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2016, 25(10): 107302.
[9] Asymmetric resistive switching processes in W:AlOx/WOy bilayer devices
Wu Hua-Qiang (吴华强), Wu Ming-Hao (吴明昊), Li Xin-Yi (李辛毅), Bai Yue (白越), Deng Ning (邓宁), Yu Zhi-Ping (余志平), Qian He (钱鹤). Chin. Phys. B, 2015, 24(5): 058501.
[10] Asymmetric reversible diode-like resistive switching behaviors in ferroelectric BaTiO3 thin films
Zhang Fei (张飞), Lin Yuan-Bin (林远彬), Wu Hao (吴昊), Miao Qing (苗青), Gong Ji-Jun (巩纪军), Chen Ji-Pei (陈继培), Wu Su-Juan (吴素娟), Zeng Min (曾敏), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2014, 23(2): 027702.
[11] Resistive switching characteristics of Ti/ZrO2/Pt RRAM device
Lei Xiao-Yi (雷晓艺), Liu Hong-Xia (刘红侠), Gao Hai-Xia (高海霞), Yang Ha-Ni (杨哈妮), Wang Guo-Ming (王国明), Long Shi-Bing (龙世兵), Ma Xiao-Hua (马晓华), Liu Ming (刘明). Chin. Phys. B, 2014, 23(11): 117305.
[12] Effects of different dopants on switching behavior of HfO2-based resistive random access memory
Deng Ning (邓宁), Pang Hua (庞华), Wu Wei (吴畏). Chin. Phys. B, 2014, 23(10): 107306.
[13] Analysis of resistive switching behaviors of vanadium oxide thin film
Wei Xiao-Ying (韦晓莹), Hu Ming (胡明), Zhang Kai-Liang (张楷亮), Wang Fang (王芳), Zhao Jin-Shi (赵金石), Miao Yin-Ping (苗银萍). Chin. Phys. B, 2013, 22(3): 037201.
[14] Bipolar resistive switching in Cr-doped TiOx thin films
Xing Zhong-Wen(邢钟文), X. Chen, N. J. Wu, and A. Ignatiev . Chin. Phys. B, 2011, 20(9): 097703.
[15] Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches
Meng Yang(孟洋), Zhang Pei-Jian(张培健), Liu Zi-Yu(刘紫玉), Liao Zhao-Liang(廖昭亮), Pan Xin-Yu(潘新宇), Liang Xue-Jin(梁学锦), Zhao Hong-Wu(赵宏武), and Chen Dong-Min(陈东敏). Chin. Phys. B, 2010, 19(3): 037304.
No Suggested Reading articles found!