ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
|
|
|
Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation |
Xin-He Dou(窦鑫河)1, Zhen Chen(陈震)1, Chen-Yan Zhang(张辰妍)1, Xiang Li(李响)1, Fei-Hong Qiao(乔飞鸿)1, Bo-Le Song(宋博乐)1, Shan Wang(王珊)1, Hao Teng(滕浩)2,†, and Zhi-Guo Lv(吕志国)1,‡ |
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Research on novel ultrafast photonic devices with wide adaptability has become important scientific technical means to realize both scheme innovation and performance breakthrough in fiber laser generation. As types of transition metal oxide, manganese dioxide (MnO$_{2}$) materials exhibit remarkable properties including high photothermal stability, strong oxidation resistance, and excellent optical properties, making them promising candidate for utilization as modulation devices in nonlinear optics and ultrafast optics fields. We investigate the impact of MnO$_{2}$-based saturable absorber (SA) on the pulse characteristics. The experiment reveals that MnO$_{2}$-based SA supports effectively pulsed laser generation in wide pump power range and large dispersion parameter space with signal-to-noise ratio more than 85 dB. As far as we know, the pump power response range is outstanding among the most of the reported pulsed lasers, which is attributed to the large modulation depth of MnO$_{2}$ SA. We also investigate the impact of dispersion on the characteristics of laser output, which is not involved in other similar works. This research indicates that MnO$_{2}$ as a photonic device has vast potential in advanced ultrafast optics.
|
Received: 19 July 2024
Revised: 20 August 2024
Accepted manuscript online: 21 August 2024
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.60.Gd
|
(Q-switching)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164030), Young Science and Technology Talents of Inner Mongolia (Grant No. NJYT22101), and the Central Government Guides Local Science and Technology Development Fund Projects (Grant No. 2023ZY0005). |
Corresponding Authors:
Hao Teng, Zhi-Guo Lv
E-mail: hteng@iphy.ac.cn;lvzhiguo@imu.edu.cn
|
Cite this article:
Xin-He Dou(窦鑫河), Zhen Chen(陈震), Chen-Yan Zhang(张辰妍), Xiang Li(李响), Fei-Hong Qiao(乔飞鸿), Bo-Le Song(宋博乐), Shan Wang(王珊), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国) Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation 2024 Chin. Phys. B 33 114202
|
[1] Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293 [2] Li L, Cheng J W, Zhao Q Y, Zhang J N, Yang H R, Zhang Y M, Hui Z Q, Zhao F and Liu W J 2023 Opt. Express 31 16872 [3] Cui W W, Xing X W, Chen Y Q, Xiao Y J, Ye H and Liu W J 2023 Chin. Phys. Lett. 10 024201 [4] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201 [5] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204 [6] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H and Liu W J 2023 Chin. Phys. Lett. 40 124202 [7] Wang M X, Li P X, Xu Y T, Zhu Y C, Li S and Yao C F 2022 Chin. Phys. Lett. 39 024201 [8] Shen J P, Huang X, Jiang S T, Jiang R R, Wang H Y, Lu P, Xu S C and Jiao M Y 2022 Chin. Phys. Lett. 39 104201 [9] Lang Y, Peng Z Y and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 [10] Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q and Wang Y J 2022 Chin. Phys. Lett. 39 123401 [11] Ma Y, Li W J, Xu Y F, Liu J Q, Zhuo N, Yang K, Zhang J C, Zhai S Q, Liu S M, Wang L J and Liu F Q 2023 Chin. Phys. Lett. 40 014201 [12] Huang K W, Wang X, Qiu Q Y, Wu L and Xiong H 2023 Chin. Phys. Lett. 40 104201 [13] Zhang X, Yi H H, Yao Y L, Wang S B and Shi L X 2023 Chin. Phys. Lett. 40 124204 [14] Yi Q, Yang L L, Yang K, Li J, Du L, Huang B, Miao L L and Zhao C J 2021 Opt. Express 29 41388 [15] Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light Sci. Appl. 13 101 [16] Han Y H, Li X H, Chen E C, An M Q, Song Z Y, Huang X Z, Liu X F, Wang Y S and Zhao W 2022 Adv. Opt. Mater. 10 2201034 [17] Li L R, Li X H, Zhao Y, Feng J J, Zhang C X, Zhang Y, Shi Y, Ge Y Q and Zhang Y N 2022 Nanotechnology 33 065203 [18] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264 [19] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 [20] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S and Tang D 2012 Appl. Phys. Lett. 101 211106 [21] Sun Z H, Jiang X T, Wen Q, Li W J and Zhang H 2019 J. Mater. Chem. C 7 4662 [22] Li P F, Chen Y, Yang T S, Wang Z Y, Lin H, Xu Y H and Li L 2017 ACS Appl. Mater. Interfaces 9 12759 [23] Jiang X T, Li W J, Hai T, Yue R, Chen Z W, Lao C S, Ge Y Q, Xie G Q, Wen Q and Zhang H 2019 npj 2D Mater. Appl. 3 34 [24] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538 [25] Mao D, Cui X Q, Zhang W D, Li M K, Feng T X, Du B B, Lu H and Zhao J L 2017 Photon. Res. 5 52 [26] Pinky Y, Ayana B and Atul T 2023 Chembioeng Rev. 10 510 [27] Li X H, Huang X Z, Han Y H, et al. 2023 Ultrafast Sci. 3 0006 [28] Magnard N P L, Kirsch A, Jorgensen M R V, Kantor I, Sorensen D R and Huotari S 2023 Inorg. Chem. 62 13021 [29] Wang Y H and Lv Y K 2016 RSC Adv. 6 54032 [30] Cheng G, Yu L, Lin T, Yang R N, Sun M, Lan B, Yang L L and Deng F Z 2014 J. Solid State Chem. 217 57 [31] Tang H, Chen W H, Li N, Hu Z L, Xiao L, Xie Y J, Xi L J, Ni L and Zhu Y R 2022 Energy Storage Mater. 48 335 [32] Gu Y D, Min Y X, Li L, Lian Y B, Sun H, Wang D, Rummeli M H, Guo J, Zhong J, Xu L, Peng Y and Deng Z 2021 Chem. Mater. 33 4135 [33] Yang R J, Guo Z J, Cai L X, et al. 2021 Small 17 2170265 [34] Tao M M, Ye X S, Wang Z B, Wu Y, Wang P, Yang P L and Feng G B 2014 Opt. Commun. 319 128 [35] Wang J Z, Luo Z Q, Zhou M, Ye C C, Fu H Y, Cai Z P, Cheng H Y, Xu H Y and Qi W 2012 IEEE Photon. J. 4 1295 [36] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823 [37] Luo Z C, Wang F Z, Liu H, Liu M, Tang R, Luo A P and Xu W C 2016 Opt. Eng. 55 081308 [38] Ping K, Cheng C, Tang T Y, Xin Y, Wang L H, Zeng Y and Hong T 2020 Photon. Res. 8 511 [39] Zhang M, Hu G H, Hu G Q, Howe R C T, Chen L, Zheng Z and Hasan T 2015 Sci. Rep. 5 17482 [40] Ahmad H, Aidit S N and Yusoff N 2018 Infrared Phys. Technol. 95 19 [41] Nady A, Ahmed M H M, Numan A, Ramesh S, Latiff A A, Ooi C H R, Arof H and Harun S W 2017 J. Mod. Opt. 64 1315 [42] Nady A, Ahmed M H M, Latiff A A, Numan A, Ooi C H R and Harun S W 2017 Laser Phys. 27 065105 [43] Zhang L Y and Wang F 2023 Opt. Fiber Technol. 80 [44] Reddy P H, Rahman M F A, Paul M C, et al. 2018 Optik 158 1327 [45] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202 [46] Chang Y M, Kim H, Lee J H and Song Y W 2010 Appl. Phys. Lett. 97 211102 [47] Zhou Y, Lin J, Zhang X Q, Xu L X, Gu C, Sun B, Wang A T and Zhan Q W 2016 Photon. Res. 4 327 [48] Ahmed N, Omar S, Jusoh Z, Rahman H A, Dimyati K, Apsari R and Harun S W 2023 Microw. Opt. Technol. Let. 65 365 [49] Khazaeizhad R, Kassani S H, Jeong H, Yeom D I and Oh K 2014 Opt. Express 22 23732 [50] Long H, Tang C Y, Cheng P K, Wang X Y, Qarony W and Tsang Y H 2019 J. Lightwave Technol. 37 1174 [51] Hu Q Y, Yang K J, Li M, Li P, Zhao H X, Zhang B, Liu J, Yang Y M and Chen X H 2023 Nanotechnology 34 365203 [52] He X Y, Liu Z B, Wang D N, Yang M W, Liao C R and Zhao X 2012 J. Lightwave Technol. 30 984 [53] Nady A, Baharom M F, Latiff A A and Harun S W 2018 Chin. Phys. Lett. 35 044204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|