|
|
Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption |
Can-Ling Jian(蹇璨岭)1, Ze-An Tian(田泽安)2,1,†, Bo Liang(梁波)1, Chen-Yang Hu(胡晨阳)1, Qiao Wang(王桥)1,3, and Jing-Xi Chen(陈靖翕)4 |
1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; 2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; 3 College of Mathematics and Big Data, Guizhou Education University, Guiyang 550018, China; 4 College of Mechanical Engineering, Guizhou University, Guiyang 550025, China |
|
|
Abstract A new four-dimensional (4D) memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system, and a detailed dynamic analysis of the system is performed. The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter. The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system. A circuit is designed and verified the feasibility of the system from the physical level. Finally, the system is applied to image encryption, and the security of the encryption system is analyzed from multiple aspects, providing a reference for the application of such memristive chaotic systems.
|
Received: 13 April 2023
Revised: 30 May 2023
Accepted manuscript online: 02 June 2023
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.Jn
|
(High-dimensional chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1612442) and Science and Technology Special Foundation Project of Guizhou Water Resources Department (Grant No. KT202236). |
Corresponding Authors:
Ze-An Tian
E-mail: tianzean@hnu.edu.cn
|
Cite this article:
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕) Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption 2023 Chin. Phys. B 32 100503
|
[1] Laskar J 1990 Icarus 88 266 [2] Rössler O E 1976 Phys. Lett. A 57 397 [3] Chen G 2000 Int. J. Bifurc. Chaos 10 1917 [4] Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 659 [5] Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031 [6] Leon O C 1994 International Journal of Circuit Theory and Applications 22 279 [7] Chua L 1971 IEEE Trans. Circuit Theory 18 507 [8] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 [9] Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves C E, Li Z, Strachan J P, Lin P, Wang Z, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Electron. 1 52 [10] Shahar K, Eby G F, Avinoam K and Uri C W 2013 IEEE International Symposium on Circuits and Systems 60 211 [11] Dou G, Zhang Y, Yang H, Han M, Guo M and Gai W 2023 Micromachines 14 410 [12] Guo Z, Wen J and Mou J 2023 Mathematics 11 24 [13] Wang Y, Li H, Guan Y and Chen M 2022 Chaos, Solitons and Fractals 161 112282 [14] Lin H, Wang C, Sun J, Zhang X, Sun Y and Iu H H C 2023 Chaos, Solitons and Fractals 166 112905 [15] Thomas A 2013 J. Phys. D: Appl. Phys. 46 093001 [16] Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qian H 2020 Nature 577 641 [17] Lin H, Wang C, Yu F, Sun J, Du S, Deng Z and Deng Q 2023 Mathematics 11 1369 [18] Lin H, Wang C, Cui L, Sun Y, Zhang X and Yao W 2022 Nonlinear Dyn. 110 841 [19] Sun J, Wang Y, Liu P, Wen S and Wang Y 2023 IEEE Trans. Cybern. 53 3351 [20] Xu Q, Liu T, Ding S, Bao H, Li Z and Chen B 2022 Cognitive Neurodynamics 17 755 [21] Aliabadi F, Majidi M H and Khorashadizadeh S 2022 Neural Comput. Appl. 34 6521 [22] Lin T, Huang F, Du Z and Lin Y 2015 International Journal of Fuzzy Systems 17 206 [23] Li Y, Zhang C, Shi Z, Ma C, Wang J and Zhang Q 2022 Sci. China Mater. 65 2110 [24] Tang L, Huang Y, Wang C, Zhao Z, Yang Y, Bian J, Wu H, Zhang Z and Zhang D W 2022 J. Mater. Chem. C 10 14695 [25] Arturo B, Luigi F, Mattia F and Lucia V G 2013 Int. J. Bifurc. Chaos 23 1330015 [26] Gokyildirim A, Yesil A and Babacan Y 2022 Analog Integr. Circuits Signal Process. 110 91 [27] Wang X, Gao M, Iu H H C and Wang C 2022 Chaos, Solitons and Fractals 159 112177 [28] Bao H, Gu Y, Xu Q, Zhang X and Bao B 2022 Chaos, Solitons and Fractals 160 112273 [29] Bo-Cheng B, Zhong L and Jian-Ping X 2010 Chin. Phys. B 19 030510 [30] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos, Solitons and Fractals 94 102 [31] Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264 [32] Zhang X, Tian Z, Li J and Cui Z 2021 Entropy 23 719 [33] Xu L and Zhang J 2022 Integration 87 313 [34] Wang F and Wang Q 2020 Chin. Phys. B 29 058502 [35] Bao H, Wang N, Bao B, Chen M, Jin P and Wang G 2018 Commun. Nonlinear Sci. Numer. Simul. 57 264 [36] Ngamsa Tegnitsap J V and Fotsin H B 2022 Chaos, Solitons and Fractals 158 112056 [37] Hu C, Wang Q, Zhang X, Tian Z and Wu X 2022 Chaos, Solitons and Fractals 162 112454 [38] khan N and Muthukumar P 2022 Circuits Syst. Signal Process. 41 2266 [39] Guo M, Yang R, Zhang M, Liu R, Zhu Y and Dou G 2021 Nonlinear Dyn. 105 877 [40] Gu S, Du B and Wan Y 2020 Int. J. Bifurc. Chaos 30 2050242 [41] Du C, Liu L, Zhang Z and Yu S 2021 Chaos, Solitons and Fractals 148 111023 [42] Sun J, Yan Y, Wang Y and Fang J 2023 Nonlinear Dyn. 111 3811 [43] Sun J, Ma Y, Wang Z and Wang Y 2023 Nonlinear Dyn. 111 8751 [44] Taheri M, Zhang C, Berardehi Z R, Chen Y and Roohi M 2022 Multimed. Tools Appl. 81 24167 [45] Xiaojuan Ma, Chunhua Wang, Wenlu Qiu and Fei Yu 2023 Int. J. Bifurc. Chaos 33 2350061 [46] Zhu Y, Wang C, Sun J and Yu F 2023 Mathematics 11 767 [47] Kocamaz U E and Uyaroǧlu Y 2014 Nonlinear Dyn. 75 63 [48] Chen F, Gu F, Xu J, Liu Z and Liu R 1998 Shengwu Wuli Xuebao 14 508 [49] Xu B, Wang G, Iu H H C, Yu S and Yuan F 2019 Nonlinear Dyn. 96 765 [50] Fatkullin N F, Shakirov T M and Balakirev N A 2010 Polym. Sci. Ser. A 52 72 [51] Geisel T and Thomae S 1984 Phys. Rev. Lett. 52 1936 [52] Liu L, Du C, Zhang X, Li J and Shi S 2019 Entropy 21 287 [53] Liu L, Du C, Zhang X, Li J and Shi S 2019 Entropy 21 383 [54] Zefreh E Z 2020 Multimed. Tools Appl. 79 24993 [55] Hu T, Liu Y, Gong L H and Ouyang C J 2017 Nonlinear Dyn. 87 51 [56] Wang X and Liu C 2017 Multimed. Tools Appl. 76 6229 [57] Liu H, Wang X and kadir A 2012 Appl. Soft Comput. 12 1457 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|