Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100503    DOI: 10.1088/1674-1056/acdac3
GENERAL Prev   Next  

Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption

Can-Ling Jian(蹇璨岭)1, Ze-An Tian(田泽安)2,1,†, Bo Liang(梁波)1, Chen-Yang Hu(胡晨阳)1, Qiao Wang(王桥)1,3, and Jing-Xi Chen(陈靖翕)4
1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
3 College of Mathematics and Big Data, Guizhou Education University, Guiyang 550018, China;
4 College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
Abstract  A new four-dimensional (4D) memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system, and a detailed dynamic analysis of the system is performed. The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter. The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system. A circuit is designed and verified the feasibility of the system from the physical level. Finally, the system is applied to image encryption, and the security of the encryption system is analyzed from multiple aspects, providing a reference for the application of such memristive chaotic systems.
Keywords:  chaotic system      memristor      intermittent chaos      multi-transient behavior      image encryption  
Received:  13 April 2023      Revised:  30 May 2023      Accepted manuscript online:  02 June 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1612442) and Science and Technology Special Foundation Project of Guizhou Water Resources Department (Grant No. KT202236).
Corresponding Authors:  Ze-An Tian     E-mail:  tianzean@hnu.edu.cn

Cite this article: 

Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕) Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption 2023 Chin. Phys. B 32 100503

[1] Laskar J 1990 Icarus 88 266
[2] Rössler O E 1976 Phys. Lett. A 57 397
[3] Chen G 2000 Int. J. Bifurc. Chaos 10 1917
[4] Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 659
[5] Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031
[6] Leon O C 1994 International Journal of Circuit Theory and Applications 22 279
[7] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[8] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[9] Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves C E, Li Z, Strachan J P, Lin P, Wang Z, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Electron. 1 52
[10] Shahar K, Eby G F, Avinoam K and Uri C W 2013 IEEE International Symposium on Circuits and Systems 60 211
[11] Dou G, Zhang Y, Yang H, Han M, Guo M and Gai W 2023 Micromachines 14 410
[12] Guo Z, Wen J and Mou J 2023 Mathematics 11 24
[13] Wang Y, Li H, Guan Y and Chen M 2022 Chaos, Solitons and Fractals 161 112282
[14] Lin H, Wang C, Sun J, Zhang X, Sun Y and Iu H H C 2023 Chaos, Solitons and Fractals 166 112905
[15] Thomas A 2013 J. Phys. D: Appl. Phys. 46 093001
[16] Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qian H 2020 Nature 577 641
[17] Lin H, Wang C, Yu F, Sun J, Du S, Deng Z and Deng Q 2023 Mathematics 11 1369
[18] Lin H, Wang C, Cui L, Sun Y, Zhang X and Yao W 2022 Nonlinear Dyn. 110 841
[19] Sun J, Wang Y, Liu P, Wen S and Wang Y 2023 IEEE Trans. Cybern. 53 3351
[20] Xu Q, Liu T, Ding S, Bao H, Li Z and Chen B 2022 Cognitive Neurodynamics 17 755
[21] Aliabadi F, Majidi M H and Khorashadizadeh S 2022 Neural Comput. Appl. 34 6521
[22] Lin T, Huang F, Du Z and Lin Y 2015 International Journal of Fuzzy Systems 17 206
[23] Li Y, Zhang C, Shi Z, Ma C, Wang J and Zhang Q 2022 Sci. China Mater. 65 2110
[24] Tang L, Huang Y, Wang C, Zhao Z, Yang Y, Bian J, Wu H, Zhang Z and Zhang D W 2022 J. Mater. Chem. C 10 14695
[25] Arturo B, Luigi F, Mattia F and Lucia V G 2013 Int. J. Bifurc. Chaos 23 1330015
[26] Gokyildirim A, Yesil A and Babacan Y 2022 Analog Integr. Circuits Signal Process. 110 91
[27] Wang X, Gao M, Iu H H C and Wang C 2022 Chaos, Solitons and Fractals 159 112177
[28] Bao H, Gu Y, Xu Q, Zhang X and Bao B 2022 Chaos, Solitons and Fractals 160 112273
[29] Bo-Cheng B, Zhong L and Jian-Ping X 2010 Chin. Phys. B 19 030510
[30] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos, Solitons and Fractals 94 102
[31] Wang X and Chen G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1264
[32] Zhang X, Tian Z, Li J and Cui Z 2021 Entropy 23 719
[33] Xu L and Zhang J 2022 Integration 87 313
[34] Wang F and Wang Q 2020 Chin. Phys. B 29 058502
[35] Bao H, Wang N, Bao B, Chen M, Jin P and Wang G 2018 Commun. Nonlinear Sci. Numer. Simul. 57 264
[36] Ngamsa Tegnitsap J V and Fotsin H B 2022 Chaos, Solitons and Fractals 158 112056
[37] Hu C, Wang Q, Zhang X, Tian Z and Wu X 2022 Chaos, Solitons and Fractals 162 112454
[38] khan N and Muthukumar P 2022 Circuits Syst. Signal Process. 41 2266
[39] Guo M, Yang R, Zhang M, Liu R, Zhu Y and Dou G 2021 Nonlinear Dyn. 105 877
[40] Gu S, Du B and Wan Y 2020 Int. J. Bifurc. Chaos 30 2050242
[41] Du C, Liu L, Zhang Z and Yu S 2021 Chaos, Solitons and Fractals 148 111023
[42] Sun J, Yan Y, Wang Y and Fang J 2023 Nonlinear Dyn. 111 3811
[43] Sun J, Ma Y, Wang Z and Wang Y 2023 Nonlinear Dyn. 111 8751
[44] Taheri M, Zhang C, Berardehi Z R, Chen Y and Roohi M 2022 Multimed. Tools Appl. 81 24167
[45] Xiaojuan Ma, Chunhua Wang, Wenlu Qiu and Fei Yu 2023 Int. J. Bifurc. Chaos 33 2350061
[46] Zhu Y, Wang C, Sun J and Yu F 2023 Mathematics 11 767
[47] Kocamaz U E and Uyaroǧlu Y 2014 Nonlinear Dyn. 75 63
[48] Chen F, Gu F, Xu J, Liu Z and Liu R 1998 Shengwu Wuli Xuebao 14 508
[49] Xu B, Wang G, Iu H H C, Yu S and Yuan F 2019 Nonlinear Dyn. 96 765
[50] Fatkullin N F, Shakirov T M and Balakirev N A 2010 Polym. Sci. Ser. A 52 72
[51] Geisel T and Thomae S 1984 Phys. Rev. Lett. 52 1936
[52] Liu L, Du C, Zhang X, Li J and Shi S 2019 Entropy 21 287
[53] Liu L, Du C, Zhang X, Li J and Shi S 2019 Entropy 21 383
[54] Zefreh E Z 2020 Multimed. Tools Appl. 79 24993
[55] Hu T, Liu Y, Gong L H and Ouyang C J 2017 Nonlinear Dyn. 87 51
[56] Wang X and Liu C 2017 Multimed. Tools Appl. 76 6229
[57] Liu H, Wang X and kadir A 2012 Appl. Soft Comput. 12 1457
[1] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
[2] Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
Peiwen Tong(童霈文), Hui Xu(徐晖), Yi Sun(孙毅), Yongzhou Wang(汪泳州), Jie Peng(彭杰),Cen Liao(廖岑), Wei Wang(王伟), and Qingjiang Li(李清江). Chin. Phys. B, 2023, 32(7): 078505.
[3] Corrigendum to “The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation andcoexisting attractors”
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2023, 32(6): 069902.
[4] A progressive surrogate gradient learning for memristive spiking neural network
Shu Wang(王姝), Tao Chen(陈涛), Yu Gong(龚钰), Fan Sun(孙帆), Si-Yuan Shen(申思远), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2023, 32(6): 068704.
[5] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
[6] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[7] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[8] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[9] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[10] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[11] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华) , Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[12] Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system
Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强). Chin. Phys. B, 2023, 32(10): 100504.
[13] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[14] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[15] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
No Suggested Reading articles found!