ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices |
Zhijiang Ye(叶之江)1, Zuanming Jin(金钻明)1,2,†, Yexin Jiang(蒋叶昕)1, Qi Lu(卢琦)3, Menghui Jia(贾梦辉)5, Dong Qian(钱冬)3,4, Xiamin Huang(黄夏敏)6,7, Zhou Li(李舟)6,7,8, Yan Peng(彭滟)1,2, and Yiming Zhu(朱亦鸣)1,2 |
1 Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; 2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China; 3 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China; 5 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 6 GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China; 7 Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China; 8 University of Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract Chalcogenide superlattices Sb$_{2}$Te$_{3}$-GeTe is a candidate for interfacial phase-change memory (iPCM) data storage devices. By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together, we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb$_{2}$Te$_{3}$-GeTe superlattices. Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric, shift and injection currents contribute to the THz generation in Sb$_{2}$Te$_{3}$-GeTe superlattices. By decreasing the thickness and increasing the number of GeTe and Sb$_{2}$Te$_{3}$ layer, the interlayer coupling can be enhanced, which significantly reduces the contribution from circular photo-galvanic effect (CPGE). A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of $\sim 1100 $ nm to $\sim 1400 $ nm further demonstrates a gapped state resulting from the interlayer coupling. These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
|
Received: 18 April 2024
Revised: 18 April 2024
Accepted manuscript online: 25 April 2024
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
73.21.Cd
|
(Superlattices)
|
|
78.47.+q
|
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFF0719200 and 2022YFA1404004), the National Natural Science Foundation of China (Grant Nos. 62322115, 61988102, 61975110, 62335012, and 12074248), 111 Project (Grant No. D18014), the Key Project supported by Science and Technology Commission Shanghai Municipality (Grant No. YDZX20193100004960), Science and Technology Commission of Shanghai Municipality (Grant Nos. 22JC1400200 and 21S31907400), and General Administration of Customs People’s Republic of China (Grant No. 2019HK006). |
Corresponding Authors:
Zuanming Jin
E-mail: physics_jzm@usst.edu.cn
|
Cite this article:
Zhijiang Ye(叶之江), Zuanming Jin(金钻明), Yexin Jiang(蒋叶昕), Qi Lu(卢琦), Menghui Jia(贾梦辉), Dong Qian(钱冬), Xiamin Huang(黄夏敏), Zhou Li(李舟), Yan Peng(彭滟), and Yiming Zhu(朱亦鸣) Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices 2024 Chin. Phys. B 33 074210
|
[1] Simpson R E, Fons P, Kolobov A V, Fukaya T, Krbal M, Yagi T and Tominaga J 2011 Nat. Nanotechnol. 6 501 [2] Okabe K L, Sood A, Yalon E, Neumann C M, Asheghi M, Pop E, Goodson K E and Wong H S P 2019 J. Appl. Phys. 125 184501 [3] Tominaga J, Simpson R E, Fons P and Kolobov A V 2011 Appl. Phys. Lett. 99 152105 [4] Egami T, Johguchi K, Yamazaki S and Takeuchi K 2014 Jpn. J. Appl. Phys. 53 04ED02 [5] Ohyanagi T and Takaura N 2016 AIP Advances 6 105104 [6] Sa B, Zhou J, Sun Z, Tominaga J and Ahuja R 2012 Phys. Rev. Lett. 109 096802 [7] Zhu S, Ishida Y, Kuroda K, Sumida K, Ye M, Wang J, Pan H, Taniguchi M, Qiao S, Shin S and Kimura A 2015 Scientific Reports 5 13213 [8] Tominaga J, Kolobov A V, Fons P, Nakano T and Murakami S 2014 Advanced Materials Interfaces 1 1300027 [9] Di Sante D, Barone P, Bertacco R and Picozzi S 2013 Adv. Mater. 25 509 [10] Ohyanagi T, Kitamura M, Araidai M, Kato S, Takaura N and Shiraishi K 2014 Appl. Phys. Lett. 104 252106 [11] Kolobov A V, Fons P, Saito Y and Tominaga J 2017 ACS Omega 2 6223 [12] Momand J, Wang R, Boschker J E, Verheijen M A, Calarco R and Kooi B J 2015 Nanoscale 7 19136 [13] Kim J, Kim J, Kim K-S and Jhi S-H 2012 Phys. Rev. Lett. 109 146601 [14] Saito Y, Makino K, Fons P, Kolobov A V and Tominaga J 2017 ACS Applied Materials & Interfaces 9 23918 [15] Tominaga J, Kolobov A V, Fons P J, Wang X, Saito Y, Nakano T, Hase M, Murakami S, Herfort J and Takagaki Y 2015 Science and Technology of Advanced Materials 16 014402 [16] Kellner J, Bihlmayer G, Liebmann M, Otto S, Pauly C, Boschker J E, Bragaglia V, Cecchi S, Wang R N, Deringer V L, Küppers P, Bhaskar P, Golias E, Sánchez-Barriga J, Dronskowski R, Fauster T, Rader O, Calarco R and Morgenstern M 2018 Communications Physics 1 5 [17] Bang D, Awano H, Tominaga J, Kolobov A V, Fons P, Saito Y, Makino K, Nakano T, Hase M, Takagaki Y, Giussani A, Calarco R and Murakami S 2014 Scientific Reports 4 5727 [18] Mondal R, Aihara Y, Saito Y, Fons P, Kolobov A V, Tominaga J and Hase M 2018 ACS Applied Materials & Interfaces 10 26781 [19] Suzuki T, Mondal R, Saito Y, Fons P, Kolobov A V, Tominaga J, Shigekawa H and Hase M 2019 J. Phys.: Condens. Matter 31 415502 [20] Kwon H, Khan A I, Perez C, Asheghi M, Pop E and Goodson K E 2021 Nano Lett. 21 5984 [21] Makino K, Saito Y, Fons P, Kolobov A V, Nakano T, Tominaga J and Hase M 2016 Scientific Reports 6 19758 [22] Shu M J, Zalden P, Chen F, Weems B, Chatzakis I, Xiong F, Jeyasingh R, Hoffmann M C, Pop E, Philip Wong H S, Wuttig M and Lindenberg A M 2014 Appl. Phys. Lett. 104 251907 [23] Makino K, Kuromiya S, Takano K, Kato K, Nakajima M, Saito Y, Tominaga J, Iida H, Kinoshita M and Nakano T 2016 ACS Applied Materials & Interfaces 8 32408 [24] Makino K, Kato K, Saito Y, Fons P, Kolobov A V, Tominaga J, Nakano T and Nakajima M 2019 Opt. Lett. 44 1355 [25] Zhu Y, Zang X, Chi H, Zhou Y, Zhu Y and Zhuang S 2023 Light: Advanced Manufacturing 4 9 [26] Lyu J, Shen S, Chen L, Zhu Y and Zhuang S 2023 PhotoniX 4 28 [27] Peng Y, Huang J, Luo J, Yang Z, Wang L, Wu X, Zang X, Yu C, Gu M, Hu Q, Zhang X, Zhu Y and Zhuang S 2021 PhotoniX 2 12 [28] Peng Q, Peng Z, Lang Y, Zhu Y, Zhang D, Lü Z and Zhao Z 2022 Chin. Phys. Lett. 39 053301 [29] Jia G R, Zhao D X, Zhang S S, Yue Z W, Qin C C, Jiao Z Y and Bian X B 2023 Chin. Phys. Lett. 40 103202 [30] Wu X 2023 Chin. Phys. Lett. 40 054001 [31] Pettine J, Padmanabhan P, Sirica N, Prasankumar R P, Taylor A J and Chen H T 2023 Light: Science & Applications 12 133 [32] Jin Z, Peng Y, Ni Y, Wu G, Ji B, Wu X, Zhang Z, Ma G, Zhang C, Chen L, Balakin A V, Shkurinov A P, Zhu Y and Zhuang S 2022 Laser & Photonics Reviews 16 2100688 [33] Jin Z, Guo Y, Peng Y, Zhang Z, Pang J, Zhang Z, Liu F, Ye B, Jiang Y, Ma G, Zhang C, Balakin A V, Shkurinov A P, Zhu Y and Zhuang S 2023 Advanced Physics Research 2 2200049 [34] Lan Z, Li Z, Xu H, Liu F, Jin Z, Peng Y and Zhu Y 2024 Chin. Phys. Lett. 41 044203 [35] Glinka Y D, Li J, He T and Sun X W 2021 ACS Photonics 8 1191 [36] Sharma P, Bhardwaj A, Sharma R, Awana V P S, Narayanan T N, Raman K V and Kumar M 2022 The Journal of Physical Chemistry C 126 11138 [37] Yang S, Cheng L and Qi J 2023 Ultrafast Science 3 0047 [38] Tong M, Hu Y, He W, Yu X L, Hu S, Cheng X and Jiang T 2021 ACS Nano 15 17565 [39] Gao Y, Pei Y, Xiang T, Cheng L and Qi J 2022 iScience 25 104511 [40] Grimme S 2006 Journal of Computational Chemistry 27 1787 [41] Blochl P E 1994 Phys. Rev. B 50 17953 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [44] Xu X, Huang Y, Zhang Z, Liu J, Lou J, Gao M, Wu S, Fang G, Zhao Z, Chen Y, Sheng Z and Chang C 2023 Chin. Phys. Lett. 40 045201 [45] Boland J L, Damry D A, Xia C Q, Schönherr P, Prabhakaran D, Herz L M, Hesjedal T and Johnston M B 2023 ACS Photonics 10 1473 [46] Seifert P, Vaklinova K, Kern K, Burghard M and Holleitner A 2017 Nano Lett. 17 973 [47] Tong M, Hu Y, Wang Z, Zhou T, Xie X, Cheng X and Jiang T 2021 Nano Lett. 21 60 [48] Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y P, Zhang W L, Su Y L, Chen X, Weng H, Kharzeev D E, Liu M K and Qi J 2020 Nat. Commun. 11 720 [49] Ji Z, Liu G, Addison Z, Liu W, Yu P, Gao H, Liu Z, Rappe A M, Kane C L, Mele E J and Agarwal R 2019 Nat. Mater. 18 955 [50] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nanotechnol. 7 96 [51] Hosur P 2011 Phys. Rev. B 83 035309 [52] Fu C, Sun Y and Felser C 2020 APL Materials 8 040913 [53] Tan L Z, Zheng F, Young S M, Wang F, Liu S and Rappe A M 2016 npj Computational Materials 2 16026 [54] Osterhoudt G B, Diebel L K, Gray M J, Yang X, Stanco J, Huang X, Shen B, Ni N, Moll P J W, Ran Y and Burch K S 2019 Nat. Mater. 18 471 [55] Ruan S, Lin X, Chen H, Song B, Dai Y, Yan X, Jin Z, Ma G and Yao J 2021 Appl. Phys. Lett. 118 011102 [56] Nguyen T A, Backes D, Singh A, Mansell R, Barnes C, Ritchie D A, Mussler G, Lanius M, Grützmacher D and Narayan V 2016 Scientific Reports 6 27716 [57] Nakamura H, Hofmann J, Inoue N, Koelling S, Koenraad P M, Mussler G, Grützmacher D and Narayan V 2020 Scientific Reports 10 21806 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|