|
|
Thermodynamics of charged AdS black hole surrounded by quintessence in restricted phase space |
Siyu Jian(简思雨), Siying Long(龙思颖), Juhua Chen(陈菊华)†, and Yongjiu Wang(王永久) |
Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics. This context is based on Visser's holographic thermodynamics with a fixed anti-de Sitter radius and a variable Newton constant. The conjugate variables, central charge $C$ and the chemical potential $\mu$, are introduced as a new pair of thermodynamic variables. We find that the iso-e-charge $T$-$S$ curve becomes non-monotonic when $\hat{Q}<\hat{Q}_{\rm c}$. Correspondingly, the $F$-$T$ curve exhibits a swallow tail structure. This behavior is considered as a van der Waals-like phase transition. As the value of $\hat{b}$ related to the energy density of Kiselev's fluid becomes larger, the critical temperature $T_{\rm c}$ will decrease. Thus, the van der Waals-like phase transition will occur at lower temperature. There is always a non-quilibrium transition from a small unstable black hole to a large stable black hole state in the isocoltage $T$-$S$ process. There exist a maximum and a Hawking-Page phase transition points in the $\mu$-$C$ plane. As the value of $\hat{b}$ related to Kiselev's fluid becomes larger, the Hawking-Page phase transition will occur at lower temperature in the isovoltage $\mu$-$T$ process. For other values of the state parameter $\omega$, there also exists van der Waals-like phase transition.
|
Received: 26 April 2024
Revised: 17 June 2024
Accepted manuscript online: 12 July 2024
|
PACS:
|
05.70.-a
|
(Thermodynamics)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
04.70.-s
|
(Physics of black holes)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12373022 and U1731107). |
Corresponding Authors:
Juhua Chen
E-mail: jhchen@hunnu.edu.cn
|
Cite this article:
Siyu Jian(简思雨), Siying Long(龙思颖), Juhua Chen(陈菊华), and Yongjiu Wang(王永久) Thermodynamics of charged AdS black hole surrounded by quintessence in restricted phase space 2024 Chin. Phys. B 33 100504
|
[1] Bekenstein J D 1972 Eur. Phys. Lett. 4 737 [2] Bekenstein J D 1973 Phys. Rev. D 7 2333 [3] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161 [4] Hawking S W 1975 Commun. Math. Phys. 43 199 [5] Smarr L 1973 Phys. Rev. Lett. 30 71 [6] Wald R M 1993 Phys. Rev. D 48 R3427 [7] Kastor D, Ray S and Traschen J 2009 Class. Quantum Grav. 26 195011 [8] Dolan B P 2011 Class. Quantum Grav. 28 125020 [9] Dolan B P 2011 Class. Quantum Grav. 28 235017 [10] Kubiznak D and Mann R B 2012 J. High Energy Phys. 2012(07) 033 [11] Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys. 2013(09) 5 [12] Kubiznak D and Mann R B 2015 Can. Phys. J. 93 999 [13] Kubiznak D, Mann R B and Mae Teo 2017 Class. Quantum Grav. 34 063001 [14] Brian P Dolan 2011 Phys. Rev. D 84 127503 [15] Bhattacharya K 2023 Nucl. Phys. B 989 116130 [16] Wang P, Wu H, Yang H and Yao F 2020 J. High Energy Phys. 2020(09) 154 [17] Hendi S H and Vahidinia M H 2013 Phys. Rev. D 88 084045 [18] Estrada M and Aros R 2020 Eur. Phys. J. C 80 1 [19] Maldacena J 1999 Int. J. Theor. Phys. 38 1133 [20] Visser M R 2022 Class. Quantum Grav. 105 106014 [21] Zeyuan G and Zhao L 2022 Class. Quantum Grav. 39 075019 [22] Gao Z, Kong X and Zhao L 2022 Eur. Phys. J. C 82 112 [23] Zhao L 2022 Chin. Phys. C 46 055105 [24] Karch A and Robinson B 2015 J. High Energy Phys. 2015(12) 1 [25] Sadeghi J, Shokri M, Gashti S N and Alipour M R 2022 Gen. Relativ. Gravit. 54 129 [26] Bai Y Y, Chen X R, Xu Z M and Wu B 2023 Chin. Phys. C 47 115105 [27] Kiselev V V 2003 Class. Quantum Grav. 20 1187 [28] Minazzoli O and Harko T 2012 Phys. Rev. D 86 087502 [29] Chen S, Wang S and Su R 2008 Phys. Rev. D 77 124011 [30] Wei Y H and Chu Z H 2011 Chin. Phys. Lett. 28 100403 [31] Thomas B B, Saleh M and Kofane T C 2012 Gen. Relativ. Gravit. 44 2181 [32] Tharanath R and Kuriakose V C 2013 Mod. Phys. Lett. A 28 1350003 [33] Ghosh S G 2016 Eur. Phys. J. C 76 222 [34] Ghaderi K and Malakolkalami B 2016 Nucl. Phys. B 903 10 [35] Ma M S, Zhao R and Ma Y Q 2017 Gen. Relativ. Gravit. 49 79 [36] Xu Z and Wang J 2017 Phys. Rev. D 95 064015 [37] Saleh M, Thomas B B and Kofane T C 2018 Int. J. Theor. Phys. 57 2640 [38] Ghosh S Z, Maharaj S D, Baboolal D and Lee T H 2018 Eur. Phys. J. C 78 90 [39] Ghaffarnejad H, Yaraie E and Farsam M 2018 Int. J. Theor. Phys. 57 1671 [40] Xu W and Wu Y 2018 Eur. Lett. 121 40001 [41] Wu C H, Zou D C and Wang Y 2018 Commun. Theor. Phys. 70 459 [42] Wu Y and Xu W 2020 Phys. Dark Univ. 27 100470 [43] Yan D W, Huang Z R and Li N 2021 Chin. Phys. C 45 015104 [44] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577 [45] Alfaia R B, Lobo I P and Brito L C T 2022 Eur. Phys. J. Plus 137 402 [46] Azreg-Ainou M 2015 Eur. Phys. J. C 75 34 [47] Hong W, Mu B and Tao J 2019 Nucl. Phys. B 949 114826 [48] Guo X Y, Li H F and Zhang L C 2020 Eur. Phys. J. C 80 168 [49] Cong W, Kubiznak D and Mann R B 2021 Phys. Rev. Lett. 127 091301 [50] Lobo I P, Graca J P M, Capossoli E F and Boschi-Filho H 2022 Phys. Lett. B 835 137559 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|