|
|
Reference-frame-independent quantum key distribution with two-way classical communication |
Chun Zhou(周淳), Hai-Tao Wang(汪海涛)†, Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Xiang Wang(汪翔)‡, Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) |
Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China |
|
|
Abstract The data post-processing scheme based on two-way classical communication (TWCC) can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution (QKD) system. In this study, we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution (RFI-QKD), and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases. Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48% to 16.75%. At the same time, the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered. We conclude that RFI-QKD with the TWCC method is of practical interest.
|
Received: 22 May 2024
Revised: 19 July 2024
Accepted manuscript online: 02 August 2024
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: The project was supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies. |
Corresponding Authors:
Hai-Tao Wang, Xiang Wang
E-mail: wht@qiclab.cn;dixonwx@163.com
|
Cite this article:
Chun Zhou(周淳), Hai-Tao Wang(汪海涛), Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Yang Zhou(周砚扬), Xiang Wang(汪翔), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Reference-frame-independent quantum key distribution with two-way classical communication 2024 Chin. Phys. B 33 100302
|
[1] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [2] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002 [3] Bennett C H and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing (New York: IEEE) p. 175 [4] Boaron A, Boso G, Rusca D, et al. 2018 Phys. Rev. Lett. 121 190502 [5] Comandar L, Lucamarini M, Fröhlich B, et al. 2016 Nat. Photon. 10 312 [6] Wang S, Yin Z Q, He D Y, et al. 2022 Nat. Photon. 16 154 [7] Fan-Yuan G J, Lu F Y, Wang S, et al. 2022 Optica 9 812 [8] Han Y X, Sun Z Q, Dou T Q, Wang J P, Li Z H, Huang Y Q, Li P Y and Ma H Q 2022 Chin. Phys. Lett. 39 070301 [9] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y and An J M 2023 Chin. Phys. B 32 124207 [10] Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304 [11] Liang W Y, Wang S, Li H W, et al. 2014 Sci. Rep. 4 3617 [12] Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319 [13] Wang F M, Zhang P, Wang X L and Li F L 2016 Phys. Rev. A 94 062330 [14] Liu H W, Wang J P, Ma H Q and Sun S H 2019 Phys. Rev. Appl 12 034039 [15] Zhang C M, Wang W B, Li H W and Wang Q 2019 Opt. Lett. 44 1226 [16] Sun S H 2021 Phys. Rev. A 104 022423 [17] Zhu J R, Wang R and Zhang C M 2022 Opt. Lett. 47 4219 [18] Wang J P, Liu H W, Ma H Q and Sun S H 2019 Phys. Rev. A 99 032309 [19] Bae J, Acín, A 2007 Phys. Rev. A 75 012334 [20] Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457 [21] Li H W, Zhang C M, Jiang M S and Cai Q Y 2022 Commun. Phys. 5 53 [22] Jiang X L, Wang Y, Li J J, et al. 2023 Opt. Express 31 9196 [23] Liu X, Luo D, Zhang Z R and Wei K J 2023 Phys. Rev. A 107 062613 [24] Wang R Q, Zhang C M, Yin Z Q, et al. 2023 New J. Phys. 24 073049 [25] Chau H F 2002 Phys. Rev. A 66 060302 [26] Ma X F, Fung C H F, Dupuis F, Chen K, Tamaki K and Lo H K 2006 Phys. Rev. A 74 032330 [27] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303 [28] Xu H, Yu Z W, Jiang C, Hu X L and Wang X B 2020 Phys. Rev. A 101 042330 [29] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 [30] Chernoff H 1952 Ann. Math. Stat. 23 493 [31] Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333 [32] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762 [33] Xu F H, Xu H and Lo H K 2014 Phys. Rev. A 89 052333 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|