Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107506    DOI: 10.1088/1674-1056/ad6554
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of Co2+ substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios

Yang Sun(孙洋)1,2, Ruoshui Liu(刘若水)3, Huayang Gong(宫华扬)2, and Baogen Shen(沈保根)1,2,3,4,†
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China;
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China;
3 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Ion substitution has significantly improved the performance of ferrite magnets, and cobalt remains a key area of research. Studies on the mechanism of Co$^{2+}$ in strontium ferrite, especially SrFe$_{2n-x}$Co$_{x}$O$_{19-\delta }$ ($n = 6.1$-5.4; $x = 0.05$-0.20) synthesized using the ceramic method, showed that Co$^{2+}$ preferentially enters the lattice as the Fe/Sr ratio decreases. This results in a decrease in the lattice constants $a$ and $c$ due to oxygen vacancies and iron ion deficiency. The impact of Co substitution on morphology is minor compared to the effect of the Fe/Sr ratio. As the Fe/Sr ratio decreases and the Co content increases, the saturation magnetization decreases. The magnetic anisotropy field exhibits a nonlinear change, generally increasing with higher Fe/Sr ratios and Co content. These changes in the performance of permanent magnets are attributed to the absence of Fe$^{3+}$ ions at the $12k + 2a$ and 2$b$ sites and the substitution of Co$^{2+}$ at the 2$b$ site. This suggests that by adjusting the Fe/Sr ratio and appropriate Co substitution, the magnetic anisotropy field of M-type strontium ferrite can be effectively optimized.
Keywords:  hexaferrite      Co substitution      Raman spectra      magnetic properties  
Received:  25 March 2024      Revised:  06 July 2024      Accepted manuscript online:  19 July 2024
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.47.Lx (Magnetic oxides)  
  87.64.kp (Raman)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
Fund: We gratefully acknowledge the financial support from the Research Projects of Ganjiang Innovation Academy, Chinese Academy of Sciences (Grant No. E355B001), Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-3), and Science Center of the National Natural Science Foundation of China (Grant No. 52088101).
Corresponding Authors:  Baogen Shen     E-mail:  shenbaogen@nimte.ac.cn

Cite this article: 

Yang Sun(孙洋), Ruoshui Liu(刘若水), Huayang Gong(宫华扬), and Baogen Shen(沈保根) Impact of Co2+ substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios 2024 Chin. Phys. B 33 107506

[1] Guzmán-Mínguez J C, Fuertes V, Granados-Miralles C, Fernández J F and Quesada A 2021 Ceram. Int. 47 31765
[2] Bibi F, Iqbal S, Kalsoom A, Jamshaid M, Ahmed A, Mirza M and Qureshi W A 2023 Ceram Int. 49 15990
[3] Huang K, Yu J, Zhang L, Xu J, Yang Z, Liu C, Wang W and Kan X 2019 J. Alloys Compd. 803 971
[4] Minachi K I 1999 Journal of the Magnetics Society of Japan 23 1093
[5] Kools F, Morel A, Grossinger R, Breton J M L and Tenaud P 2002 J. Magn. Magn. Mater. 242-245 12701276
[6] Pieper M W, Kools F and Morel A 2002 Phys. Rev. B 65 184402
[7] Lechevallier L, Breton J M L, Teillet J, Morel A and Tenaud P 2003 Phys. B 327 135
[8] Liu C, Kan X, Liu X, Feng S, Hu J, Wang W, Rehman K M U and Shezad M 2020 Ceram. Int. 46 171
[9] Tyrman M, Pasko A, Barrière D L, Olivier, Mazaleyrat, Frédéric and Razek 2015 Eur. Phys. J. Appl. Phys. 72 20601
[10] Huang T, Peng L, Li L, Wang R, Hu Y and Tu X 2016 J. Rare. Earth. 34 148
[11] Liu R, Wang L, Xu Z, Qin C, Li Z, Yu X, Liu D, Gong H, Zhao T, Sun J, Hu F and Shen B 2022 Mate. Today Commun. 32 103996
[12] Li L Z, Sokolov A, Yu C J, Li L Z, Sokolov A, Yu C J, Li Q F, Li Q F, Qian K, Vincent G and Harris 2021 Ceram. Int. 47 25514
[13] Selvi K T and Priya M 2020 J. Supercond Nov. Magn. 33 713
[14] Yu X, Wang L, Liu R, Zhou N, Xu Z, Gong H, Zhao T, Sun J, Hu F and Shen B 2023 Ceram. Int. 49 10499
[15] Liu R, Wang L, Yu X, Xu Z, Gong H, Zhao T, Hu F and Shen B 2023 Ceram. Int. 49 1888
[16] Nagasawa N, Oura M, Ikeda S, Waki T, Tabata Y, Nakamura H and Kobayashi H 2020 J. Appl. Phys. 128 133901
[17] Qin C, Sun Y, Li Z, Liu R, Jing X, Wang L, Zhao T and Gong H 2023 Arab. J. Chem. 16 105092
[18] Teh G B, Nagalingam S and Jefferson D A 2007 Mater. Chem. Phys. 101 158
[19] Singh H K, Mohapatra P P, Dobbidi P and Chittari B L 2023 J. Phys. D: Appl. Phys. 56 415304
[20] Chen D, Zeng D and Liu Z 2016 Mater. Res. Express 3 045002
[21] Kreisel J, Lucazeau G and Vincent H 1998 Int. J. Quantum Chem. 137 127
[22] Liu C, Kan X, Hu F, Liu X, Feng S, Hu J, Wang W, Rehman K M U, Shezad M, Zhang C, Li H, Zhou S and Wu Q 2019 J. Alloys Compd. 785 452
[23] Waki T, Takao K, Tabata Y and Nakamura H 2020 J. Solid State Chem. 282 121071
[24] Sharma M, Kashyap S C and Gupta H C 2014 Phys. B 448 24
[25] Huang K, Yu J, Zhang L, Xu J, Yang Z, Liu C, Wang W and Kan X 2019 J. Alloys Compd. 803 971
[26] Shoushtari M Z, Ghahfarokhi S E M and Ranjbar F 2012 Advanced Materials Research 622-623 925
[27] Bercoff P G, Herme C and Jacobo S E 2009 J. Magn. Magn. Mater. 321 2245
[28] Kreisel J, Vincent H, Tasset F, Pate M and Ganne J P 2001 J. Magn. Magn. Mater. 224 17
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[3] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[4] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[5] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[6] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[7] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[10] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[11] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[14] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!