CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets |
Yuhao Li(李豫豪)1,2, Xiaodong Fan(范晓东)2, Zhi Jia(贾智)2,3, Lu Fan(范璐)2, Guangfei Ding(丁广飞)2,3, Xincai Liu(刘新才)1,†, Shuai Guo(郭帅)2,‡, Bo Zheng(郑波)2,§, Shuai Cao(曹帅)2, Renjie Chen(陈仁杰)2,3, and Aru Yan(闫阿儒)2,3 |
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; 2 CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets. In this work, a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure, magnetic properties and corrosion resistance of NdFeB magnets. Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary. While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains, its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets. Besides, during corrosion, an In-rich precipitate phase formed, hindering the ingress of the corrosive medium into the magnet. Consequently, this significantly bolstered the corrosion resistance of the sintered NdFeB magnets. The phase formation, magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work, which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
|
Received: 07 August 2023
Revised: 20 November 2023
Accepted manuscript online: 21 November 2023
|
PACS:
|
75.50.Ww
|
(Permanent magnets)
|
|
68.35.bd
|
(Metals and alloys)
|
|
82.45.Bb
|
(Corrosion and passivation)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: This work was funded by Ningbo Key R&D Plan and “Unveiling and Leading” (Grant No. 2023Z093), Ningbo Science and Technology Innovation 2025 Major Special Project (Grant No. 2022Z106), and Hezhou City Central Leading Local Science and Technology Development Special Fund Project (Grant No. HK ZY2022002). |
Corresponding Authors:
Xincai Liu, Shuai Guo, Bo Zheng
E-mail: liuxincai@nbu.edu.cn;gshuai@nimte.ac.cn;zhengbo@nimte.ac.cn
|
Cite this article:
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒) Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets 2024 Chin. Phys. B 33 037508
|
[1] Prosperi D, Bevan A I, Ugalde G, Tudor C O, Furlan G, Dove S, Lucia P and Zakotnik M 2018 J. Magn. Magn. Mater. 460 448 [2] Ma B M, Herchenroeder J W, Smith B, Suda M, Brown D N and Chen Z 2002 J. Magn. Magn. Mater. 239 418 [3] Zhang Y X, Zhao Y, Hu W, Wang X F and Yang R S 2023 J. Alloys Compd. 934 167862 [4] Ya C S, M G Zhu, W Liu, R Han, W C Zhang, Y F Li and W Li 2017 Chin. Phys. B 26 107501 [5] Liu W F, Zhang M G, Zhang K Q, Zhang H J, Xu X H and Chai Y S 2016 Chin. Phys. B 25 117506 [6] Xie Y H, Cao S, Cao X J, Wu T F, Kou M P, Jia Z, Ding G F, Guo S, Chen R J, Liu X C, Yan A R and Xu Z Y 2023 J. Alloys Compd. 931 167562 [7] Li L, Tirado A, Conner B S, Chi M F, Elliott A M, Rios O, Zhou H D and Paranthaman M P 2017 J. Magn. Magn. Mater. 438 163 [8] Fan S N, Wang Z X, Jin Z H, Ding G F, Fan X D, Cao S, Guo S, Zheng B, Chen R J, Yan A R and Meng B 2022 J. Alloys Compd. 896 163127 [9] Ze T Shu, B Z, G F Ding, S Cao. Liao J H Di, S Guo, R J Chen, A R Yan and L S 2020 Chin. Phys. B 29 57501 [10] Ding J J, Xu B J and Ling G P 2014 Appl. Surf. Sci. 305 309 [11] Derewnicka-Krawczynska D, Ferrari S, Bilovol V, Pagnola M, Morawiec K and Saccone F D 2018 J. Magn. Magn. Mater. 462 83 [12] Okamoto S, Miyazawa K, Yomogita T, Kikuchi N, Kitakami O, Toyoki K, Billington D, Kotani Y, Nakamura T, Sasaki T, Ohkubo T, Hono K, Takada Y, Sato T, Kaneko and Y Kato 2019 Acta Mater. 178 90 [13] Woodcock T G, Ramasse Q M, Hrkac G, Shoji T, Yano M, Kato A and Gutileisch O 2014 Acta Mater. 77 111 [14] Sepehri-Amin H, Li W F, Ohkubo T, Nishiuchi T, Hirosawa S and Hono K 2010 Acta Mater. 58 1309 [15] Feng Q, Huang Y, Li H, Yu J Y, Wang C Y, Wu Z, Yao Y, Hou Y, Li W, Ma L and Yu H 2023 J. Alloys Compd. 940 168827 [16] Peng B X, Jin J Y, Liu Y S, Lu C X, Li L W and Yan M 2020 Corros. Sci. 177 108972 [17] Zhang P, Ma T, Liang L and Yan M 2014 Mater. Chem. Phys. 147 982 [18] Zhang K, Fan E, He J, Li X and Huang Y 2021 J. Magn. Magn. Mater. 538 168309 [19] Dai J L, Yang Z X and Liu Q 2020 Materials 13 4360 [20] Li B, Zhou X S, Chen X P, Fu S, Wang X D and Zhao D L 2022 Materials 15 7523 [21] Billington D, Okazaki H, Toyoki K, Kotani Y, Takada Y, Sato T, Kaneko Y, Kato A, Sasaki T T, Ohkubo T, Hono K and Nakamura T 2021 Acta Mater. 205 116517 [22] Li J, Tang X, Sepehri-Amin H, Sasaki T T, Ohkubo T and Hono K 2020 Acta Mater. 187 66 [23] Tao J, Liu, B, Zhang P, Xu G, Lv J, Huang J, Yan J, Sun W, Li B, Wang D and Wu Y 2023 J. Rare Earths 41 1203 [24] Zhang K, Fan E, He J, Li X and Huang Y 2021 J. Magn. Magn. Mater. 538 168309 [25] Ni J J, Zhang Z Y, Liu Y, Jia Z F, Huang B X and Yin Y B 2016 Physica B 499 64 [26] El-Moneim A A, Gebert A, Uhlemann M, Gutfleisch O and Schultz L 2002 Corros. Sci. 44 1857 [27] Huang Y, Li H, Zuo M, Tao L, Wang W, Zhang J, Tang Q and Bai P 2016 J. Magn. Magn. Mater. 409 39 [28] Ku N C, Qin C D, Yu C C and Ng D H L 1996 IEEE Trans. Magn. 32 4407 [29] Assis O B G, Sinka V, Ferrante M and Oliveira I L 1995 J. Alloys Compd. 218 263 [30] Liu W Q, Yue M, Zhang D T, Zhang J X and Liu X B 2009 J. Appl. Phys. 105 07A709 [31] Guo S, Zhou Q Y, Chen R J, Lee D and Yan A R 2011 J. Appl. Phys. 109 07A734 [32] Guo S, Liu Y H, Chen B C, Yan C J, Chen R J, Lee D and Yan A R 2012 J. Appl. Phys. 111 07A740 [33] Fan X D, Ding G F, Chen K, Guo S, You C Y, Chen R J, Lee D and Yan A R 2018 Acta Mater. 154 343 [34] Noguchi D, Takeda O, Zhu H and Sugimoto S 2021 J. Magn. Magn. Mater. 539 168407 [35] Mottram R S, Williams A J and Harris I R 2000 J. Magn. Magn. Mater. 217 27 [36] Rada M, Gebert A, Mazilu I, Khlopkov K, Gutfleisch O, Schultz L and Rodewald W 2006 J. Alloys Compd. 415 111 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|