Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107507    DOI: 10.1088/1674-1056/ad6f93
Special Issue: SPECIAL TOPIC — Recent progress on kagome metals and superconductors
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6

Meng Lyu(吕孟)1, Yang Liu(刘洋)1,2, Shen Zhang(张伸)1,3, Junyan Liu(刘俊艳)1, Jinying Yang(杨金颖)1,2, Yibo Wang(王一博)1,2, Yiting Feng(冯乙婷)1,2, Xuebin Dong(董学斌)1,2, Binbin Wang(王彬彬)1, Hongxiang Wei(魏红祥)1, and Enke Liu(刘恩克)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantum states, including superconductivity, quantum spin liquids, and topological electronic states. This has attracted significant interest within the field of condensed matter physics. Here, we present the observation of an anomalous Hall effect in an iron-based kagome antiferromagnet LuFe$_{6}$Sn$_{6}$, which implies a non-zero Berry curvature in this compound. By means of extensive magnetic measurements, a high Neel temperature, $T_{\rm N} = 552 $ K, and a spin reorientation behavior were identified and a simple temperature-field phase diagram was constructed. Furthermore, this compound was found to exhibit a large Sommerfeld coefficient of $\gamma = 87 $ mJ$\cdot $mol$^{-1}\cdot$K$^{-2}$, suggesting the presence of a strong electronic correlation effect. Our research indicates that LuFe$_{6}$Sn$_{6}$ is an intriguing compound that may exhibit magnetism, strong correlation, and topological states.
Keywords:  kagome lattice      anomalous Hall effect      magnetism      electronic correlation  
Received:  11 July 2024      Revised:  06 August 2024      Accepted manuscript online:  15 August 2024
PACS:  75.50.Ee (Antiferromagnetics)  
  72.15.-v (Electronic conduction in metals and alloys)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403400, 2019YFA0704900, and 2022YFA1403800), the Fundamental Science Center of the National Natural Science Foundation of China (Grant No. 52088101), the National Natural Science Foundation of China (Grant Nos. 11974394 and 12174426), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB33000000), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-057), the Synergetic Extreme Condition User Facility (Grant No. SECUF), and the Scientific Instrument Developing Project of CAS (Grant No. ZDKYYQ20210003).
Corresponding Authors:  Enke Liu     E-mail:  ekliu@iphy.ac.cn

Cite this article: 

Meng Lyu(吕孟), Yang Liu(刘洋), Shen Zhang(张伸), Junyan Liu(刘俊艳), Jinying Yang(杨金颖), Yibo Wang(王一博), Yiting Feng(冯乙婷), Xuebin Dong(董学斌), Binbin Wang(王彬彬), Hongxiang Wei(魏红祥), and Enke Liu(刘恩克) Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6 2024 Chin. Phys. B 33 107507

[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[2] Coleman P and Nevidomskyy A H 2010 J. Low Temp. Phys. 161 182
[3] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003
[4] Mielke A 1991 J. Phys. A 24 L73
[5] Provenzano P P 2020 Nat. Mater. 19 130
[6] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635
[7] Wang Q, Lei H, Qi Y and Felser C 2024 Accounts of Materials Research 5 786
[8] Zhao H, Zhang J, Lyu M, Bachus S, Tokiwa Y, Gegenwart P, Zhang S, Cheng J, Yang Y F, Chen G, Isikawa Y, Si Q, Steglich F and Sun P 2019 Nat. Phys. 15 1261
[9] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[10] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085
[11] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Karel J, Komarek A C, Shekhar, Nitesh C, Kümar N, Schnelle W, Kubler J, Felser C and Parkin S S 2016 Science Advances 2 e1501870
[12] Chen T, Tomita T, Minami S, Fu M, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R and Nakatsuji S 2021 Nat. Commun. 12 572
[13] Mazet T and Malaman B 2000 J. Magn. Magn.c Mater. 219 33
[14] Rao X L and Coey J M D 1997 J. Appl. Phys. 81 5181
[15] Mazet T and Malaman B 2001 J. Alloy. Compd. 325 67
[16] Liu Y, Lyu M, Liu J, Zhang S, Yang J, Du Z, Wang B, Wei H and Liu E 2023 Chin. Phys. Lett. 40 047102
[17] Venturini G, Chafik B, Idrissi E and Malaman B 1991 J. Magn. Magn. Mater. 94 35
[18] Zhang X, Liu Z, Cui Q, Guo Q, Wang N, Shi L, Zhang H, Wang W, Dong X, Sun J, Dun Z and Cheng J 2022 Phys. Rev. Materials 6 105001
[19] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Zahid Hasan M 2020 Nature 583 533
[20] Avila M A, Takabatake T, Takahashi Y, Bud’ko S L and Canfield P C 2005 J. Phys.: Condens. Matter 17 6969
[21] Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T and Chen X H 2016 Phys. Rev. Lett. 116 147001
[22] Sun Y, Zhang J, Yao T, Sun X F, Ke S H, Zhang J and Zhou S M 2023 Phys. Rev. B 107 094416
[23] Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J and Lai X 2018 Science Advances 4 eaao6791
[24] Schnelle W, Leithe J A, Rosner H, Schappacher F M, Pöttgen R, Pielnhofer F and Weihrich R 2013 Phys. Rev. B 88 144404
[25] Tomita T, Minami S, Ikhlas M, Nakamura H, Arita R and Nakatsuji S 2022 J. Phys.: Conf. Series 2164 012065
[26] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[27] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103
[28] Bernhard J, Lebech B, Beckman O 1984 J. Phys. F: Metal Physics 14 2379
[29] Bernhard J, Lebech B, Beckman O 1988 J. Phys. F: Metal Physics 18 539
[30] Teng X, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P 2022 Nature 609 490
[31] Chen L, Teng X, Tan H, Winn B L, Granroth G E, Ye F, Yu D H, Mole R A, Gao B, Yan B, Yi M and Dai P 2024 Nat. Commun. 15 1918
[32] Ye L, Fang S, Kang M, Kaufmann J, Lee Y, John C, Neves P M, Zhao S Y F, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Bell D C, Janson O, Comin R and Checkelsky J G 2024 Nat. Phys. 20 610
[33] Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y and Felser C 2021 Nat. Mater. 21 203
[1] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[2] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[3] Dzyaloshinskii-Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures
Yaoyuan Wang(王垚元), Long You(游龙), Kai Chang(常凯), and Hongxin Yang(杨洪新). Chin. Phys. B, 2024, 33(9): 097508.
[4] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[5] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[6] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[7] Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds
Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌). Chin. Phys. B, 2024, 33(7): 077504.
[8] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[9] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[10] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[11] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[12] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[13] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[14] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[15] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
No Suggested Reading articles found!