Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096804    DOI: 10.1088/1674-1056/ad641f
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Atomically self-healing of structural defects in monolayer WSe2

Kangshu Li(李康舒)1, Junxian Li(李俊贤)1, Xiaocang Han(韩小藏)1, Wu Zhou(周武)2, and Xiaoxu Zhao(赵晓续)1,3,†
1 School of Materials Science and Engineering, Peking University, Beijing 100871, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 AI for Science Institute, Beijing 100084, China
Abstract  Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides (TMDs) materials and improving device performance to desired properties. However, the methods in defect control currently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore, we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging with scanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusion migration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE), and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancy defects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples and defects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEM for defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.
Keywords:  scanning transmission electron microscopy (STEM)      atom manipulation      nanoscale materials and structures: fabrication and characterization      new materials: theory      design      fabrication  
Received:  01 May 2024      Revised:  12 July 2024      Accepted manuscript online:  17 July 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  81.16.Ta (Atom manipulation)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: X.Z. thanks the Beijing Natural Science Foundation (Grant Nos. JQ24010 and Z220020), the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (Grant No. 52273279). Project supported by the Electron Microscopy Laboratory of Peking University, China for the use of Nion U-HERMES200 scanning transmission electron microscopy.
Corresponding Authors:  Xiaoxu Zhao     E-mail:  xiaoxuzhao@pku.edu.cn

Cite this article: 

Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续) Atomically self-healing of structural defects in monolayer WSe2 2024 Chin. Phys. B 33 096804

[1] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[3] Ghorbani-Asl M, Borini S, Kuc A and Heine T 2013 Phys. Rev. B 87 235434
[4] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 Nature 526 91
[5] Kis A 2012 Nat. Nanotechnol. 7 683
[6] Liang Q, Zhang Q, Zhao X, Liu M and Wee A T S 2021 ACS Nano 15 2165
[7] Mitterreiter E, Schuler B, Micevic A, Hernangómez-Pérez D, Barthelmi K, Cochrane K A, Kiemle J, Sigger F, Klein J, Wong E, Barnard E S, Watanabe K, Taniguchi T, Lorke M, Jahnke F, Finley J J, Schwartzberg A M, Qiu D Y, Refaely-Abramson S, Holleitner A W, Weber-Bargioni A and Kastl C 2021 Nat. Commun. 12 3822
[8] Anon 2012 Nat. Nanotechnol. 7 683
[9] Ippolito S and Samorí P 2022 Small Sci. 2 2100122
[10] Min J, Kim J H and Kang J 2024 ACS Appl. Nano Mater.
[11] Yuan L and Huang L 2015 Nanoscale 7 7402
[12] Wang H, Zhang C and Rana F 2015 Nano Lett. 15 339
[13] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293
[14] Zhu W, Low T, Lee Y H, Wang H, Farmer D B, Kong J, Xia F and Avouris P 2014 Nat. Commun. 5 3087
[15] Caulfield J C and Fisher A J 1997 J. Phys. Condens. Matter 9 3671
[16] Fuhr J D, Sául A and Sofo J O 2004 Phys. Rev. Lett. 92 26802
[17] Yong K S, Otalvaro D M, Duchemin I, Saeys M and Joachim C 2008 Phys. Rev. B 77 205429
[18] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615
[19] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 35503
[20] Tiwari R K, Yang J, Saeys M and Joachim C 2008 Surf. Sci. 602 2628
[21] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O’Farrell E C T, Eda G, Castro Neto A H and Ozyilmaz B 2014 Nat. Commun. 5 4875
[22] Zheng Y J, Chen Y, Huang Y L, Gogoi P K, Li M Y, Li L J, Trevisanutto P E, Wang Q, Pennycook S J, Wee A T S and Quek S Y 2019 ACS Nano 13 6050
[23] Petö J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B and Tapasztó L 2018 Nat. Chem. 10 1246
[24] Lu J, Carvalho A, Chan X K, Liu H, Liu B, Tok E S, Loh K P, Castro Neto A H and Sow C H 2015 Nano Lett. 15 3524
[25] Ma D, Wang Q, Li T, He C, Ma B, Tang Y, Lu Z and Yang Z 2016 J. Mater. Chem. C 4 7093
[26] Mahjouri-Samani M, Liang L, Oyedele A, Kim Y S, Tian M, Cross N, Wang K, Lin M W, Boulesbaa A, Rouleau C M, Puretzky A A, Xiao K, Yoon M, Eres G, Duscher G, Sumpter B G and Geohegan D B 2016 Nano Lett. 16 5213
[27] Fujisawa K, Carvalho B R, Zhang T, Perea-López N, Lin Z, Carozo V, Ramos S L L M, Kahn E, Bolotsky A, Liu H, Elías A L and Terrones M 2021 ACS Nano 15 9658
[28] Zhang X, Liao Q, Liu S, Kang Z, Zhang Z, Du J, Li F, Zhang S, Xiao J and Liu B 2017 Nat. Commun. 8 15881
[29] Roy S, Choi W, Jeon S, Kim D H, Kim H, Yun S J, Lee Y, Lee J, Kim Y-M and Kim J 2018 Nano Lett. 18 4523
[30] Zhao X, Ji Y, Chen J, Fu W, Dan J, Liu Y, Pennycook S J, Zhou W and Loh K P 2019 Adv. Mater. 31 1900237
[31] Hong J, Wang Y, Wang A, Lv D, Jin C, Xu Z, Probert M I J, Yuan J and Zhang Z 2017 Nanoscale 9 10312
[32] Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Nature 464 571
[33] Zhao X, Kotakoski J, Meyer J C, Sutter E, Sutter P, Krasheninnikov A V, Kaiser U and Zhou W 2017 MRS Bull. 42 667
[34] Dyck O, Kim S, Kalinin S V and Jesse S 2017 Appl. Phys. Lett. 111 113104
[35] Zhao X, Dan J, Chen J, Ding Z, Zhou W, Loh K P and Pennycook S J 2018 Adv. Mater. 30 1707281
[36] Yue R, Nie Y, Walsh L A, Addou R, Liang C, Lu N, Barton A T, Zhu H, Che Z, Barrera D, Cheng L, Cha P R, Chabal Y J, Hsu J W P, Kim J, Kim M J, Colombo L, Wallace R M, Cho K and Hinkle C L 2017 2D Mater. 4 45019
[37] Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M and Robinson J A 2015 ACS Nano 9 2080
[38] Liu H J, Jiao L, Xie L, Yang F, Chen J L, Ho W K, Gao C L, Jia J F, Cui X D and Xie M H 2015 2D Mater. 2 34004
[39] Egerton R F 2019 Micron 119 72
[40] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436
[41] McKinley Jr, William A and Feshbach H 1948 Phys. Rev. 12 1759
[42] Susi T, Kotakoski J, Kepaptsoglou D, Mangler C, Lovejoy T C, Krivanek O L, Zan R, Bangert U, Ayala P, Meyer J C and Ramasse Q 2014 Phys. Rev. Lett. 113 115501
[43] Yoshimura A, Lamparski M, Kharche N and Meunier V 2018 Nanoscale 10 2388
[44] Hong J, Pan Y, Hu Z, Lv D, Jin C, Ji W, Yuan J and Zhang Z 2017 Nano Lett. 17 3383
[45] Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F and Zettl A 2008 Nano Lett. 8 3582
[46] Nie Y, Liang C, Zhang K, Zhao R, Eichfeld S M, Cha P R, Colombo L, Robinson J A, Wallace R M and Cho K 2016 2D Mater. 3 25029
[47] Nellist P D and Pennycook S J 2000 Advances in Imaging and Electron Physics vol. 113, edn. P W Hawkes (Elsevier) pp. 147-203
[48] Li S, Wang Y P, Ning S, Xu K, Pantelides S T, Zhou W and Lin J 2023 Nano Lett. 23 1298
[1] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[2] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[3] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[4] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[5] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
[6] Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
Kunqi Huang(黄坤琦), Yiran Lin(林懿然), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2024, 33(10): 104301.
[7] Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design
Xianglin Huang(黄香林), Ying Wang(王英), Huixiang Huang(黄慧香), Li Duan(段理), and Tingting Guo(郭婷婷). Chin. Phys. B, 2024, 33(1): 017303.
[8] Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2024, 33(1): 016104.
[9] Design, fabrication and optimization of electromagnetic absorption metamaterials
Qi Lou(娄琦), Xu-Dong Zhang(张旭东), and Ming-Gang Xia(夏明岗). Chin. Phys. B, 2023, 32(9): 094102.
[10] Exploring unbinding mechanism of drugs from SERT via molecular dynamics simulation and its implication in antidepressants
Xin-Guan Tan(谭新官), Xue-Feng Liu(刘雪峰), Ming-Hui Pang(庞铭慧), Yu-Qing Wang(王雨晴), and Yun-Jie Zhao(赵蕴杰). Chin. Phys. B, 2023, 32(8): 088702.
[11] Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source
Yuan-Yuan Xue(薛院院), Zu-Jun Wang(王祖军), Wei Chen(陈伟), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Bao-Ping He(何宝平), Xu Nie(聂栩), Shankun Lai(赖善坤), Gang Huang(黄港), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), and Shi-Long Gou(缑石龙). Chin. Phys. B, 2023, 32(7): 076101.
[12] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[13] Finite-time H filtering for Markov jump systems with uniform quantization
Jingjing Dong(董敬敬), Xiaofeng Ma(马晓峰), Xiaoqing Zhang(张晓庆), Jianping Zhou(周建平), and Zhen Wang(王震). Chin. Phys. B, 2023, 32(11): 110202.
[14] Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films
Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松). Chin. Phys. B, 2023, 32(11): 117303.
[15] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
No Suggested Reading articles found!