Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 098501    DOI: 10.1088/1674-1056/ad597f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors

Heng Yang(杨恒)1, Mingjun Ma(马明军)1, Yongfeng Pei(裴永峰)1, Yufan Kang(康雨凡)1, Jialu Yan(延嘉璐)1, Dong He(贺栋)1, Changzhong Jiang(蒋昌忠)1, Wenqing Li(李文庆)1,†, and Xiangheng Xiao(肖湘衡)1,2,‡
1 School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China;
2 Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China
Abstract  Ultraviolet photodetectors (UV PDs) are widely used in civilian, scientific, and military fields due to their high sensitivity and low false alarm rates. We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides (TMDs), which can effectively be used to extend the optical response range. The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl$_{4}$ as a light absorption layer on the surface of WS$_{2}$, significantly enhancing its UV photodetection performance. Under 365 nm laser irradiation, WS$_{2}$ PDs exhibit response speed of 24 ms/20 ms, responsivity of 660 mA/W, detectivity of $3.3\times 10^{11}$ Jones, and external quantum efficiency of 226%. Moreover, we successfully apply this doping method to other TMDs materials (such as MoS$_{2}$, MoSe$_{2}$, and WSe$_{2})$ and fabricate WS$_{2}$ lateral p-n heterojunction PDs.
Keywords:  two-dimensional (2D) materials      p-type doping      transition metal dichalcogenides      photodetectors  
Received:  17 April 2024      Revised:  08 June 2024      Accepted manuscript online:  19 June 2024
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.30.Tv (Field effect devices)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 12025503, U23B2072, 12074293, and 12275198) and the Fundamental Research Funds for the Center Universities (Grant Nos. 2042024kf0001 and 2042023kf0196).
Corresponding Authors:  Wenqing Li, Xiangheng Xiao     E-mail:  wenqing_li@whu.edu.cn;xxh@whu.edu.cn

Cite this article: 

Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡) Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors 2024 Chin. Phys. B 33 098501

[1] Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z A, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y and Hao J H 2023 Nat. Commun. 14 418
[2] Guo L, Guo Y A, Wang J X and Wei T B 2021 J. Semicond. 42 081801
[3] Raeiszadeh M and Adeli B 2020 ACS Photon. 7 2941
[4] Wang X L, Chen Y F, Liu F and Pan Z W 2020 Nat. Commun. 11 2040
[5] Ouyang W X, Chen J X, Shi Z F and Fang X S 2021 Appl. Phys. Rev. 8 031315
[6] Um D Y, Chandran B, Kim J Y, Oh J K, Kim S U, An J U, Lee C R and Ra Y H 2023 Adv. Funct. Mater. 33 2306143
[7] Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X and Luo L B 2021 ASC Nano 15 16729
[8] Gong C H, Chu J W, Yin C J, Yan C Y, Hu X Z, Qian S F, Hu Y, Hu K, Huang J W, Wang H B, Wang Y, Wangyang P H, Lei T Y, Dai L P, Wu C Y, Chen B, Li C B, Liao M, Zhai T Y and Xiong J 2019 Adv. Mater. 31 1903580
[9] Tang X, Li K H, Zhao Y, Sui Y, Liang H L, Liu Z, Liao C H, Babatain W, Lin R Y, Wang C J, Lu Y, Alqatari F S, Mei Z X, Tang W H and Li X H 2022 ACS Appl. Mater. Inter. 14 1304
[10] Bu T, Duan X P, Liu C, Su W H, Hong X T, Hong R H, Zhou X J, Liu Y, Fan Z Y, Zou X M, Liao L and Liu X Q 2023 Adv. Funct. Mater. 33 2305490
[11] Wang B H, Xing Y H, Dong S Y, Li J H, Han J, Tu H Y, Lei T, He W X, Zhang B S and Zeng Z M 2023 Chin. Phys. B 32 098504
[12] Li C L, Cao Q, Wang F Z, Xiao Y Q, Li Y B, Delaunay J J and Zhu H W 2018 Chem. Soc. Rev. 13 4981
[13] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[14] Li G, Chen M Q, Zhao S X, Li P W, Hu J, Sang S B and Hou J J 2016 Acta Phys.-Chim. Sin. 32 2905
[15] Wu W B, Ruan Z H, Li J Z, Li Y D, Jiang Y Q, Xu X Z, Li D F, Yuan Y and Lin K F 2019 Nano-Micro Lett. 11 10
[16] Luo Y T, Zhang S Q, Pan H Y, Xiao S J, Guo Z L, Tang L, Khan U, Ding B F, Li M, Cai Z Y, Zhao Y, Lv W, Feng Q L, Zou X L, Lin J H, Cheng H M and Liu B L 2020 ACS Nano 14 767
[17] Wang J, He D, Chen R, Xu H, Wang H B, Yang M H, Zhang Q, Jiang C Z, Li W Q, Ouyang X P and Xiao X H 2023 InfoMat 5 e12476
[18] Nagaoka A, Kimura K, Ang A K R, Takabayashi Y, Yoshino K, Sun Q D, Dou B Y, Wei S H, Hayashi K and Nishioka K 2023 J. Am. Chem. Soc. 16 9191
[19] Torsi R, Munson K T, Pendurthi R, Marques E, Van Troeye B, Huberich L, Schuler B, Feidler M, Wang K, Pourtois G, Das S, Asbury J B, Lin Y C and Robinson J A 2023 ACS Nano 16 15629
[20] Kim J K, Cho K, Jang J, Baek K Y, Kim J, Seo J, Song M W, Shin J, Kim J, Parkin S S P, Lee J H, Kang K H and Lee T 2021 Adv. Mater. 33 2101598
[21] Pan X, Zheng Y, Shi Y M and Chen W 2021 ACS Mater. Lett. 3 235
[22] Maity S, Sarkar K and Kumar P 2023 Nanoscale 15 16068
[23] Bar-Saden M and Tenne R 2024 Nat. Mater. 23 310
[24] Peimyoo N, Yang W H, Shang J Z, Shen X N, Wang Y L and Yu T 2014 ACS Nano 11 11320
[25] Jeong I, Cho K, Yun S, Shin J, Kim J, Kim G T, Lee T and Chung S 2022 ACS Nano 16 6215
[26] Zhu Q, Li W H, Wu J X, Tian N C, Li Y W, Yang J W and Liu B T 2022 ACS Appl. Mater. Inter. 14 51994
[27] Bussolotti F, Kawai H, Maddumapatabandi T D, Fu W, Khoo K H, Goh and K E J 2024 ACS Nano 18 8706
[28] Li Z X, Li D Y, Wang H Y, Xu X, Pi L J, Chen P, Zhai T Y and Zhou X 2022 ACS Nano 16 4884
[29] Yang J L, Liu Y, Wang E Y, Pang J B, Huang S R, Gemming T, Bi J S, Bachmatiuk A, Jia H, Hu S X, Jiang C Y, Liu H, Cuniberti G, Zhou W J and Rümmeli M H 2023 Nano Res. 17 3232
[30] Cao X Y, Yan S H, Li Z T, Fang Z H, Wang L, Liu X F, Chen Z W, Lei H C and Zhang X 2023 J. Phys. Chem. Lett. 14 11529
[31] Pataniya P M and Sumesh C K 2020 ACS Appl. Nano Mater. 3 6935
[32] Liu B Y, Zhao C, Chen X Q, Zhang L R, Li Y F, Yan H and Zhang Y Z 2019 Superlattice Microst. 130 87
[33] Rahman S, Tabassum R and Hafiz A K 2024 Opt. Laser. Technol. 172 110494
[34] Pal S, Mukherjee S, Nand M, Srivastava H, Mukherjee C, Jha S N and Ray S K 2020 Appl. Surf. Sci. 502 144196
[35] Wang F, Yin L, Wang Z X, Xu K, Wang F M, Shifa T A, Huang Y, Jiang C and He J 2016 Adv. Funct. Mater. 26 5499
[36] Zhou Y H, Zhang Z B, Xu P, Zhang H and Wang B 2019 Nanoscale Res. Lett. 14 364
[37] Lei S D, Wang X F, Li B, Kang J H, He Y M, George A, Ge L H, Gong Y J, Dong P, Jin Z H, Brunetto G, Chen W B, Lin Z T, Baines R, Galvao D S, Lou J, Barrera E, Banerjee K, Vajtai R and Ajayan P 2016 Nat. Nanotechnol. 11 465
[38] Wu C Y, Zeng B, Zhou K N, Shan L Q, Wang J J, Wang L, Yang Y Z, Zhou Y X and Luo L B 2022 IEEE Trans. Electron. Dev. 69 2469
[39] Li S P, Lei T, Yan Z X, Wang Y, Zhang L K, Tu H Y, Shi W H and Zeng Z M 2024 Chin. Phys. B 33 018501
[1] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[2] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[3] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[4] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[5] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[6] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[7] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[8] Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2023, 32(10): 107308.
[9] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[10] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[11] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[12] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[13] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[14] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[15] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
No Suggested Reading articles found!