INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors |
Heng Yang(杨恒)1, Mingjun Ma(马明军)1, Yongfeng Pei(裴永峰)1, Yufan Kang(康雨凡)1, Jialu Yan(延嘉璐)1, Dong He(贺栋)1, Changzhong Jiang(蒋昌忠)1, Wenqing Li(李文庆)1,†, and Xiangheng Xiao(肖湘衡)1,2,‡ |
1 School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China; 2 Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China |
|
|
Abstract Ultraviolet photodetectors (UV PDs) are widely used in civilian, scientific, and military fields due to their high sensitivity and low false alarm rates. We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides (TMDs), which can effectively be used to extend the optical response range. The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl$_{4}$ as a light absorption layer on the surface of WS$_{2}$, significantly enhancing its UV photodetection performance. Under 365 nm laser irradiation, WS$_{2}$ PDs exhibit response speed of 24 ms/20 ms, responsivity of 660 mA/W, detectivity of $3.3\times 10^{11}$ Jones, and external quantum efficiency of 226%. Moreover, we successfully apply this doping method to other TMDs materials (such as MoS$_{2}$, MoSe$_{2}$, and WSe$_{2})$ and fabricate WS$_{2}$ lateral p-n heterojunction PDs.
|
Received: 17 April 2024
Revised: 08 June 2024
Accepted manuscript online: 19 June 2024
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 12025503, U23B2072, 12074293, and 12275198) and the Fundamental Research Funds for the Center Universities (Grant Nos. 2042024kf0001 and 2042023kf0196). |
Corresponding Authors:
Wenqing Li, Xiangheng Xiao
E-mail: wenqing_li@whu.edu.cn;xxh@whu.edu.cn
|
Cite this article:
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡) Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors 2024 Chin. Phys. B 33 098501
|
[1] Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z A, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y and Hao J H 2023 Nat. Commun. 14 418 [2] Guo L, Guo Y A, Wang J X and Wei T B 2021 J. Semicond. 42 081801 [3] Raeiszadeh M and Adeli B 2020 ACS Photon. 7 2941 [4] Wang X L, Chen Y F, Liu F and Pan Z W 2020 Nat. Commun. 11 2040 [5] Ouyang W X, Chen J X, Shi Z F and Fang X S 2021 Appl. Phys. Rev. 8 031315 [6] Um D Y, Chandran B, Kim J Y, Oh J K, Kim S U, An J U, Lee C R and Ra Y H 2023 Adv. Funct. Mater. 33 2306143 [7] Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X and Luo L B 2021 ASC Nano 15 16729 [8] Gong C H, Chu J W, Yin C J, Yan C Y, Hu X Z, Qian S F, Hu Y, Hu K, Huang J W, Wang H B, Wang Y, Wangyang P H, Lei T Y, Dai L P, Wu C Y, Chen B, Li C B, Liao M, Zhai T Y and Xiong J 2019 Adv. Mater. 31 1903580 [9] Tang X, Li K H, Zhao Y, Sui Y, Liang H L, Liu Z, Liao C H, Babatain W, Lin R Y, Wang C J, Lu Y, Alqatari F S, Mei Z X, Tang W H and Li X H 2022 ACS Appl. Mater. Inter. 14 1304 [10] Bu T, Duan X P, Liu C, Su W H, Hong X T, Hong R H, Zhou X J, Liu Y, Fan Z Y, Zou X M, Liao L and Liu X Q 2023 Adv. Funct. Mater. 33 2305490 [11] Wang B H, Xing Y H, Dong S Y, Li J H, Han J, Tu H Y, Lei T, He W X, Zhang B S and Zeng Z M 2023 Chin. Phys. B 32 098504 [12] Li C L, Cao Q, Wang F Z, Xiao Y Q, Li Y B, Delaunay J J and Zhu H W 2018 Chem. Soc. Rev. 13 4981 [13] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [14] Li G, Chen M Q, Zhao S X, Li P W, Hu J, Sang S B and Hou J J 2016 Acta Phys.-Chim. Sin. 32 2905 [15] Wu W B, Ruan Z H, Li J Z, Li Y D, Jiang Y Q, Xu X Z, Li D F, Yuan Y and Lin K F 2019 Nano-Micro Lett. 11 10 [16] Luo Y T, Zhang S Q, Pan H Y, Xiao S J, Guo Z L, Tang L, Khan U, Ding B F, Li M, Cai Z Y, Zhao Y, Lv W, Feng Q L, Zou X L, Lin J H, Cheng H M and Liu B L 2020 ACS Nano 14 767 [17] Wang J, He D, Chen R, Xu H, Wang H B, Yang M H, Zhang Q, Jiang C Z, Li W Q, Ouyang X P and Xiao X H 2023 InfoMat 5 e12476 [18] Nagaoka A, Kimura K, Ang A K R, Takabayashi Y, Yoshino K, Sun Q D, Dou B Y, Wei S H, Hayashi K and Nishioka K 2023 J. Am. Chem. Soc. 16 9191 [19] Torsi R, Munson K T, Pendurthi R, Marques E, Van Troeye B, Huberich L, Schuler B, Feidler M, Wang K, Pourtois G, Das S, Asbury J B, Lin Y C and Robinson J A 2023 ACS Nano 16 15629 [20] Kim J K, Cho K, Jang J, Baek K Y, Kim J, Seo J, Song M W, Shin J, Kim J, Parkin S S P, Lee J H, Kang K H and Lee T 2021 Adv. Mater. 33 2101598 [21] Pan X, Zheng Y, Shi Y M and Chen W 2021 ACS Mater. Lett. 3 235 [22] Maity S, Sarkar K and Kumar P 2023 Nanoscale 15 16068 [23] Bar-Saden M and Tenne R 2024 Nat. Mater. 23 310 [24] Peimyoo N, Yang W H, Shang J Z, Shen X N, Wang Y L and Yu T 2014 ACS Nano 11 11320 [25] Jeong I, Cho K, Yun S, Shin J, Kim J, Kim G T, Lee T and Chung S 2022 ACS Nano 16 6215 [26] Zhu Q, Li W H, Wu J X, Tian N C, Li Y W, Yang J W and Liu B T 2022 ACS Appl. Mater. Inter. 14 51994 [27] Bussolotti F, Kawai H, Maddumapatabandi T D, Fu W, Khoo K H, Goh and K E J 2024 ACS Nano 18 8706 [28] Li Z X, Li D Y, Wang H Y, Xu X, Pi L J, Chen P, Zhai T Y and Zhou X 2022 ACS Nano 16 4884 [29] Yang J L, Liu Y, Wang E Y, Pang J B, Huang S R, Gemming T, Bi J S, Bachmatiuk A, Jia H, Hu S X, Jiang C Y, Liu H, Cuniberti G, Zhou W J and Rümmeli M H 2023 Nano Res. 17 3232 [30] Cao X Y, Yan S H, Li Z T, Fang Z H, Wang L, Liu X F, Chen Z W, Lei H C and Zhang X 2023 J. Phys. Chem. Lett. 14 11529 [31] Pataniya P M and Sumesh C K 2020 ACS Appl. Nano Mater. 3 6935 [32] Liu B Y, Zhao C, Chen X Q, Zhang L R, Li Y F, Yan H and Zhang Y Z 2019 Superlattice Microst. 130 87 [33] Rahman S, Tabassum R and Hafiz A K 2024 Opt. Laser. Technol. 172 110494 [34] Pal S, Mukherjee S, Nand M, Srivastava H, Mukherjee C, Jha S N and Ray S K 2020 Appl. Surf. Sci. 502 144196 [35] Wang F, Yin L, Wang Z X, Xu K, Wang F M, Shifa T A, Huang Y, Jiang C and He J 2016 Adv. Funct. Mater. 26 5499 [36] Zhou Y H, Zhang Z B, Xu P, Zhang H and Wang B 2019 Nanoscale Res. Lett. 14 364 [37] Lei S D, Wang X F, Li B, Kang J H, He Y M, George A, Ge L H, Gong Y J, Dong P, Jin Z H, Brunetto G, Chen W B, Lin Z T, Baines R, Galvao D S, Lou J, Barrera E, Banerjee K, Vajtai R and Ajayan P 2016 Nat. Nanotechnol. 11 465 [38] Wu C Y, Zeng B, Zhou K N, Shan L Q, Wang J J, Wang L, Yang Y Z, Zhou Y X and Luo L B 2022 IEEE Trans. Electron. Dev. 69 2469 [39] Li S P, Lei T, Yan Z X, Wang Y, Zhang L K, Tu H Y, Shi W H and Zeng Z M 2024 Chin. Phys. B 33 018501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|