Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107308    DOI: 10.1088/1674-1056/acea6c
RAPID COMMUNICATION Prev   Next  

Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion

Jiyong Zhou(周纪勇)1, Jianju Tang(唐剑炬)1, and Hongyi Yu(俞弘毅)1,2,†
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing&School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Using the Lindemann criterion, we analyzed the quantum and thermal melting of electronic/excitonic crystals recently discovered in two-dimensional (2D) semiconductor moiré patterns. We show that the finite 2D screening of the atomically thin material can suppress (enhance) the inter-site Coulomb (dipolar) interaction strength, thus inhibits (facilitates) the formation of the electronic (excitonic) crystal. Meanwhile, a strong enough moiré confinement is found to be essential for realizing the crystal phase with a wavelength near 10 nm or shorter. From the calculated Lindemann ratio which quantifies the fluctuation of the site displacement, we estimate that the crystal will melt into a liquid above a critical temperature ranging from several tens Kelvin to above 100 K (depending on the system parameters).
Keywords:  moiré      pattern      transition metal dichalcogenides      electronic crystal      excitonic crystal      Lindemann criterion  
Received:  04 June 2023      Revised:  12 July 2023      Accepted manuscript online:  26 July 2023
PACS:  73.20.Qt (Electron solids)  
  73.21.Cd (Superlattices)  
  73.21.Ac (Multilayers)  
  73.43.Cd (Theory and modeling)  
Fund: H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province of China (Grant No. 2019QN01X061).
Corresponding Authors:  Hongyi Yu     E-mail:  yuhy33@mail.sysu.edu.cn

Cite this article: 

Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅) Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion 2023 Chin. Phys. B 32 107308

[1] Mak K F and Shan J 2022 Nat. Nanotech. 17 686
[2] Wilson N P, Yao W, Shan J, et al. 2021 Nature 599 383
[3] Tang Y, Li L, Li T, et al. 2020 Nature 579 353
[4] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359
[5] Shimazaki Y, Schwartz I, Watanabe K, et al. 2020 Nature 580 472
[6] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
[7] Chu Z, Regan E C, Ma X, et al. 2020 Phys. Rev. Lett. 125 186803
[8] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214
[9] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715
[10] Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. 2021 Nature 595 53
[11] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402
[12] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114
[13] Li H, Li S, Regan E C, et al. 2021 Nature 597 650
[14] Shimazaki Y, Kuhlenkamp C, Schwartz I, et al. 2021 Phys. Rev. X 11 021027
[15] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940
[16] Seyler K L, Rivera P, Yu H, et al. 2019 Nature 567 66
[17] Baek H, Brotons-Gisbert M, Koong Z X, et al. 2020 Sci. Adv. 6 eaba8526
[18] Brotons-Gisbert M, Baek H, Campbell A, et al. 2021 Phys. Rev. X 11 031033
[19] Brotons-Gisbert M, Baek H, Molina-Sánchez A, et al. 2020 Nat. Mater. 19 630
[20] Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242
[21] Suris R A 2016 J. Exp. Theor. Phys. 122 602
[22] Chui S T, Wang N and Wan C Y 2020 Phys. Rev. B 102 125420
[23] Yu H and Yao W 2021 Phys. Rev. X 11 021042
[24] Lagoin C, Bhattacharya U, Grass T, et al. 2022 Nature 609 485
[25] Bai Y, Liu S, Guo Y et al. arXiv:2207.09601
[26] Xiong R, Nie J H, Brantly S L, et al. 2023 Science 380 860
[27] Park H, Zhu J, Wang X, et al. 2023 Nat. Phys. 19 1286
[28] Tanatar B and Ceperley D M 1989 Phys. Rev. B 39 5005
[29] Babadi M, Skinner B, Fogler M M, et al. 2013 Europhys. Lett. 103 16002
[30] Astrakharchik G E, Boronat J, Kurbakov I L, et al. 2007 Phys. Rev. Lett. 98 060405
[31] Bedanov V M, Gadiyak G V and Lozovik Y E 1985 Phys. Lett. A 109 289
[32] Bruun G M and Nelson D R 2014 Phys. Rev. B 89 094112
[33] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
[34] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418
[35] Karni O, Barré E, Pareek V, et al. 2022 Nature 603 247
[36] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452
[37] Yu H, Liu G B, Tang J, et al. 2017 Sci. Adv. 3 e1701696
[38] Wu F, Lovorn T and MacDonald A H 2018 Phys. Rev. B 97 035306
[39] Wu F, Lovorn T, Tutuc E, et al. 2018 Phys. Rev. Lett. 121 026402
[40] Yu H and Zhou J 2023 Nat. Sci. 3 e20220065
[41] Knörzer J, Schuetz M J A, Giedke G, et al. 2020 Phys. Rev. B 101 125101
[42] Rhodes D, Chae S H, Ribeiro-Palau R, et al. 2019 Nat. Mater. 18 541
[43] Yukalov V I and Ziegler K 2015 Phys. Rev. A 91 023628
[44] Larentis S, Movva H C P, Fallahazad B, et al. 2018 Phys. Rev. B 97 201407
[45] Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48
[1] Turing pattern selection for a plant-wrack model with cross-diffusion
Ying Sun(孙颖), Jinliang Wang(王进良), You Li(李由), Nan Jiang(江南), and Juandi Xia(夏娟迪). Chin. Phys. B, 2023, 32(9): 090203.
[2] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[3] Epitaxial growth of trilayer graphene moiré superlattice
Yalong Yuan(袁亚龙), Yanbang Chu(褚衍邦), Cheng Hu(胡成), Jinpeng Tian(田金朋), Le Liu(刘乐), Fanfan Wu(吴帆帆), Yiru Ji(季怡汝), Jiaojiao Zhao(赵交交), Zhiheng Huang(黄智恒), Xiaozhou Zan(昝晓洲), Luojun Du(杜罗军), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Zhiwen Shi(史志文), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2023, 32(7): 077304.
[4] Turing/Turing-like patterns: Products of random aggregation of spatial components
Jian Gao(高见), Xin Wang(王欣), Xinshuang Liu(刘心爽), and Chuansheng Shen(申传胜). Chin. Phys. B, 2023, 32(7): 070503.
[5] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[6] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[7] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[8] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[9] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[10] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[11] Effects of strain on the flat band in twisted bilayer graphene
Zhen Zhang(张镇), Lu Wen(文露), Youkai Qiao(乔友凯), and Zhiqiang Li(李志强). Chin. Phys. B, 2023, 32(10): 107302.
[12] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Drop impact on substrates with heterogeneous stiffness
Yang Cheng(成阳), Jian-Gen Zheng(郑建艮), Chen Yang(杨晨), Song-Lei Yuan(袁松雷), Guo Chen(陈果), and Li-Yu Liu(刘雳宇). Chin. Phys. B, 2022, 31(8): 084702.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!