|
|
Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion |
Jiyong Zhou(周纪勇)1, Jianju Tang(唐剑炬)1, and Hongyi Yu(俞弘毅)1,2,† |
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing&School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Using the Lindemann criterion, we analyzed the quantum and thermal melting of electronic/excitonic crystals recently discovered in two-dimensional (2D) semiconductor moiré patterns. We show that the finite 2D screening of the atomically thin material can suppress (enhance) the inter-site Coulomb (dipolar) interaction strength, thus inhibits (facilitates) the formation of the electronic (excitonic) crystal. Meanwhile, a strong enough moiré confinement is found to be essential for realizing the crystal phase with a wavelength near 10 nm or shorter. From the calculated Lindemann ratio which quantifies the fluctuation of the site displacement, we estimate that the crystal will melt into a liquid above a critical temperature ranging from several tens Kelvin to above 100 K (depending on the system parameters).
|
Received: 04 June 2023
Revised: 12 July 2023
Accepted manuscript online: 26 July 2023
|
|
Fund: H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province of China (Grant No. 2019QN01X061). |
Corresponding Authors:
Hongyi Yu
E-mail: yuhy33@mail.sysu.edu.cn
|
Cite this article:
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅) Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion 2023 Chin. Phys. B 32 107308
|
[1] Mak K F and Shan J 2022 Nat. Nanotech. 17 686 [2] Wilson N P, Yao W, Shan J, et al. 2021 Nature 599 383 [3] Tang Y, Li L, Li T, et al. 2020 Nature 579 353 [4] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359 [5] Shimazaki Y, Schwartz I, Watanabe K, et al. 2020 Nature 580 472 [6] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861 [7] Chu Z, Regan E C, Ma X, et al. 2020 Phys. Rev. Lett. 125 186803 [8] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214 [9] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715 [10] Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. 2021 Nature 595 53 [11] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402 [12] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114 [13] Li H, Li S, Regan E C, et al. 2021 Nature 597 650 [14] Shimazaki Y, Kuhlenkamp C, Schwartz I, et al. 2021 Phys. Rev. X 11 021027 [15] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940 [16] Seyler K L, Rivera P, Yu H, et al. 2019 Nature 567 66 [17] Baek H, Brotons-Gisbert M, Koong Z X, et al. 2020 Sci. Adv. 6 eaba8526 [18] Brotons-Gisbert M, Baek H, Campbell A, et al. 2021 Phys. Rev. X 11 031033 [19] Brotons-Gisbert M, Baek H, Molina-Sánchez A, et al. 2020 Nat. Mater. 19 630 [20] Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242 [21] Suris R A 2016 J. Exp. Theor. Phys. 122 602 [22] Chui S T, Wang N and Wan C Y 2020 Phys. Rev. B 102 125420 [23] Yu H and Yao W 2021 Phys. Rev. X 11 021042 [24] Lagoin C, Bhattacharya U, Grass T, et al. 2022 Nature 609 485 [25] Bai Y, Liu S, Guo Y et al. arXiv:2207.09601 [26] Xiong R, Nie J H, Brantly S L, et al. 2023 Science 380 860 [27] Park H, Zhu J, Wang X, et al. 2023 Nat. Phys. 19 1286 [28] Tanatar B and Ceperley D M 1989 Phys. Rev. B 39 5005 [29] Babadi M, Skinner B, Fogler M M, et al. 2013 Europhys. Lett. 103 16002 [30] Astrakharchik G E, Boronat J, Kurbakov I L, et al. 2007 Phys. Rev. Lett. 98 060405 [31] Bedanov V M, Gadiyak G V and Lozovik Y E 1985 Phys. Lett. A 109 289 [32] Bruun G M and Nelson D R 2014 Phys. Rev. B 89 094112 [33] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406 [34] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418 [35] Karni O, Barré E, Pareek V, et al. 2022 Nature 603 247 [36] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452 [37] Yu H, Liu G B, Tang J, et al. 2017 Sci. Adv. 3 e1701696 [38] Wu F, Lovorn T and MacDonald A H 2018 Phys. Rev. B 97 035306 [39] Wu F, Lovorn T, Tutuc E, et al. 2018 Phys. Rev. Lett. 121 026402 [40] Yu H and Zhou J 2023 Nat. Sci. 3 e20220065 [41] Knörzer J, Schuetz M J A, Giedke G, et al. 2020 Phys. Rev. B 101 125101 [42] Rhodes D, Chae S H, Ribeiro-Palau R, et al. 2019 Nat. Mater. 18 541 [43] Yukalov V I and Ziegler K 2015 Phys. Rev. A 91 023628 [44] Larentis S, Movva H C P, Fallahazad B, et al. 2018 Phys. Rev. B 97 201407 [45] Zhou Y, Sung J, Brutschea E, et al. 2021 Nature 595 48 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|