Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇)1, Jianju Tang(唐剑炬)1, and Hongyi Yu(俞弘毅)1,2,†
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing&School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract Using the Lindemann criterion, we analyzed the quantum and thermal melting of electronic/excitonic crystals recently discovered in two-dimensional (2D) semiconductor moiré patterns. We show that the finite 2D screening of the atomically thin material can suppress (enhance) the inter-site Coulomb (dipolar) interaction strength, thus inhibits (facilitates) the formation of the electronic (excitonic) crystal. Meanwhile, a strong enough moiré confinement is found to be essential for realizing the crystal phase with a wavelength near 10 nm or shorter. From the calculated Lindemann ratio which quantifies the fluctuation of the site displacement, we estimate that the crystal will melt into a liquid above a critical temperature ranging from several tens Kelvin to above 100 K (depending on the system parameters).
Fund: H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province of China (Grant No. 2019QN01X061).
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅) Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion 2023 Chin. Phys. B 32 107308
[1] Mak K F and Shan J 2022 Nat. Nanotech.17 686 [2] Wilson N P, Yao W, Shan J, et al. 2021 Nature599 383 [3] Tang Y, Li L, Li T, et al. 2020 Nature579 353 [4] Regan E C, Wang D, Jin C, et al. 2020 Nature579 359 [5] Shimazaki Y, Schwartz I, Watanabe K, et al. 2020 Nature580 472 [6] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater.19 861 [7] Chu Z, Regan E C, Ma X, et al. 2020 Phys. Rev. Lett.125 186803 [8] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature587 214 [9] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys.17 715 [10] Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. 2021 Nature595 53 [11] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett.127 037402 [12] Li H, Li S, Naik M H, et al. 2021 Nat. Phys.17 1114 [13] Li H, Li S, Regan E C, et al. 2021 Nature597 650 [14] Shimazaki Y, Kuhlenkamp C, Schwartz I, et al. 2021 Phys. Rev. X11 021027 [15] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater.20 940 [16] Seyler K L, Rivera P, Yu H, et al. 2019 Nature567 66 [17] Baek H, Brotons-Gisbert M, Koong Z X, et al. 2020 Sci. Adv.6 eaba8526 [18] Brotons-Gisbert M, Baek H, Campbell A, et al. 2021 Phys. Rev. X11 031033 [19] Brotons-Gisbert M, Baek H, Molina-Sánchez A, et al. 2020 Nat. Mater.19 630 [20] Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun.6 6242 [21] Suris R A 2016 J. Exp. Theor. Phys.122 602 [22] Chui S T, Wang N and Wan C Y 2020 Phys. Rev. B102 125420 [23] Yu H and Yao W 2021 Phys. Rev. X11 021042 [24] Lagoin C, Bhattacharya U, Grass T, et al. 2022 Nature609 485 [25] Bai Y, Liu S, Guo Y et al. arXiv:2207.09601 [26] Xiong R, Nie J H, Brantly S L, et al. 2023 Science380 860 [27] Park H, Zhu J, Wang X, et al. 2023 Nat. Phys.19 1286 [28] Tanatar B and Ceperley D M 1989 Phys. Rev. B39 5005 [29] Babadi M, Skinner B, Fogler M M, et al. 2013 Europhys. Lett.103 16002 [30] Astrakharchik G E, Boronat J, Kurbakov I L, et al. 2007 Phys. Rev. Lett.98 060405 [31] Bedanov V M, Gadiyak G V and Lozovik Y E 1985 Phys. Lett. A109 289 [32] Bruun G M and Nelson D R 2014 Phys. Rev. B89 094112 [33] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B84 085406 [34] Kylänpää I and Komsa H P 2015 Phys. Rev. B92 205418 [35] Karni O, Barré E, Pareek V, et al. 2022 Nature603 247 [36] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B97 195452 [37] Yu H, Liu G B, Tang J, et al. 2017 Sci. Adv.3 e1701696 [38] Wu F, Lovorn T and MacDonald A H 2018 Phys. Rev. B97 035306 [39] Wu F, Lovorn T, Tutuc E, et al. 2018 Phys. Rev. Lett.121 026402 [40] Yu H and Zhou J 2023 Nat. Sci.3 e20220065 [41] Knörzer J, Schuetz M J A, Giedke G, et al. 2020 Phys. Rev. B101 125101 [42] Rhodes D, Chae S H, Ribeiro-Palau R, et al. 2019 Nat. Mater.18 541 [43] Yukalov V I and Ziegler K 2015 Phys. Rev. A91 023628 [44] Larentis S, Movva H C P, Fallahazad B, et al. 2018 Phys. Rev. B97 201407 [45] Zhou Y, Sung J, Brutschea E, et al. 2021 Nature595 48
Exciton luminescence and many-body effect of monolayer WS2 at room temperature Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.