Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057303    DOI: 10.1088/1674-1056/ac9b30
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments

Shu-Dong Wu(吴曙东)
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Abstract  The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides (ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional (2D) nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
Keywords:  monolayer transition metal dichalcogenides      hydrogenic donor impurity      intersubband optical absorption      dielectric environment      nonorthogonal associated Laguerre basis  
Received:  05 June 2022      Revised:  08 October 2022      Accepted manuscript online:  19 October 2022
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  71.55.-i (Impurity and defect levels)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  77.22.Ch (Permittivity (dielectric function))  
Corresponding Authors:  Shu-Dong Wu     E-mail:  sdwu@yzu.edu.cn

Cite this article: 

Shu-Dong Wu(吴曙东) Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments 2023 Chin. Phys. B 32 057303

[1] Borghardt S, Tu J S, Winkler F, Schubert J, Zander W, Leosson K and Kardynal B E 2017 Phys. Rev. Materials 1 054001
[2] Tuan D V, Yang M and Dery H 2018 Phys. Rev. B 98 125308
[3] Pang Y D, Wu E X, Xu Z H, Hu X D, Wu S, Xu L Y and Liu J 2021 Chin. Phys. B 30 068501
[4] Ma J J, Wu K, Wang Z Y, Ma R S, Bao L H, Dai Q, Ren J D and Gao H J 2022 Chin. Phys. B 31 088105
[5] Bian C, Shi J, Liu X, Yang Y, Yang H and Gao H 2022 Chin. Phys. B 31 097304
[6] Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G, Wu K, Zhang C, Jiang Y, Zhu X L and Zhuang X J 2022 Chin. Phys. B 31 057803
[7] Henriques J C G, Kamban H C, Pedersen T G and Peres N M R 2021 Phys. Rev. B 103 235412
[8] Kusch P, Mueller N S, Hartmann M T and Reich S 2021 Phys. Rev. B 103 235409
[9] Stepanov P, Vashisht A, Klaas M, Lundt N, Tongay S, Blei M, Höfling S, Volz T, Minguzzi A, Renard J, Schneider C and Richard M 2021 Phys. Rev. Lett. 126 167401
[10] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[12] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[13] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[14] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[15] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802
[16] Bastard G 1981 Phys. Rev. B 24 4714
[17] Yen S T 2002 Phys. Rev. B 66 075340
[18] Yen S T 2003 Phys. Rev. B 68 165331
[19] ahin M 2008 Phys. Rev. B 77 045317
[20] Perraud S, Kanisawa K, Wang Z Z and Fujisawa T 2008 Phys. Rev. Lett. 100 056806
[21] Lin C Y and Ho Y K 2011 Phys. Rev. A 84 023407
[22] Skinner B 2019 Phys. Rev. Materials 3 104601
[23] Aghajanian M, Schuler B, Cochrane K A, Lee J H, Kastl C, Neaton J B, Weber-Bargioni A, Mostofi A A and Lischner J 2020 Phys. Rev. B 101 081201
[24] Yang X C and Xing Y 2020 Chin. Phys. B 29 087802
[25] W Chao, Li N, Dai N, Shi W Z, Hu G J and Zhu H 2021 Chin. Phys. B 30 050702
[26] Wu W and Fisher A J 2021 Phys. Rev. B 104 035433
[27] Pereira V M, Nilsson J and Neto A H C 2007 Phys. Rev. Lett. 99 166802
[28] Noh J Y, Kim H, Park M and Kim Y S 2015 Phys. Rev. B 92 115431
[29] Villari L D M, Galbraith I and Biancalana F 2018 Phys. Rev. B 98 205402
[30] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
[31] Tuan D V, Yang M and Dery H 2018 Phys. Rev. B 98 125308
[32] Prazdnichnykh A I, Glazov M M, Ren L, Robert C, Urbaszek B and Marie X 2021 Phys. Rev. B 103 085302
[33] Yang X C, Yu H and Wang Y 2021 Phys. Rev. B 104 245305
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Hashemi A, Krasheninnikov A V, Puska M and Komsa H P 2019 Phys. Rev. Materials 3 023806
[36] Anvari R, Zaremba E and Dignam M M 2021 Phys. Rev. B 104 155402
[37] Kohn W and Luttinger J M 1955 Phys. Rev. 97 883
[38] Kohn W and Luttinger J M 1955 Phys. Rev. 98 915
[39] Wu S, Cheng L and Wang Q 2017 Mater. Res. Express 4 085017
[40] Li S S 1993 Semiconductor Physical Electronics (Boston: Springer US) p. 246
[41] Lax M 1960 Phys. Rev. 119 1502
[42] Orlova E E and Harrison P 2004 Appl. Phys. Lett. 85 5257
[43] Keldysh L V 1979 JETP Lett. 29 658
[44] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
[45] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318
[46] Wu S, Cheng L and Wang Q 2019 Phys. Rev. B 100 115430
[47] Wu S 2022 Physica E 141 115238
[48] Luttinger J M 1956 Phys. Rev. 102 1030
[49] Robertson J 2004 Eur. Phys. J.: Appl. Phys. 28 265
[50] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products, 7th edn. (Amsterdam: Academic) pp. 700-755
[1] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
No Suggested Reading articles found!