Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 098701    DOI: 10.1088/1674-1056/ad4ff4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films

S X Chen(陈思学)1, M M Chen(陈明明)1,†, Y Liu(刘圆)1, D W Cao(曹大威)2, and G J Chen(陈国杰)3
1 Department of Microelectronics, Jiangsu University, Zhenjiang 212013, China;
2 Department of Physics, Jiangsu University, Zhenjiang 212013, China;
3 Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China
Abstract  Ferroelectric HfO$_{2}$ has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor (CMOS) technology. However, the crystallization of polar orthorhombic phase (o-phase) HfO$_{2}$ is less competitive, which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO$_{2}$ thin films. Fortunately, the crystallization of o-phase HfO$_{2}$ can be thermodynamically modulated via interfacial stress engineering. In this paper, the growth of improved ferroelectric Al doped HfO$_{2}$ (HfO$_{2}$:Al) thin films on (111)-oriented Si substrate has been reported. Structural analysis has suggested that nonpolar monoclinic HfO$_{2}$:Al grown on (111)-oriented Si substrate suffered from a strong compressive strain, which promoted the crystallization of (111)-oriented o-phase HfO$_{2}$ in the as-grown HfO$_{2}$:Al thin films. In addition, the in-plane lattice of (111)-oriented Si substrate matches well with that of (111)-oriented o-phase HfO$_{2}$, which further thermally stabilizes the o-phase HfO$_{2}$. Accordingly, an improved ferroelectricity with a remnant polarization (2$P_{\rm r}$) of 26.7 μC/cm$^{2}$ has been obtained. The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO$_{2}$ thin films.
Keywords:  improved ferroelectricity      interfacial stress engineering      compressive strain      HfO$_{2}$  
Received:  28 January 2024      Revised:  22 May 2024      Accepted manuscript online:  24 May 2024
PACS:  87.15.Zg (Phase transitions)  
  64.60.Ej (Studies/theory of phase transitions of specific substances)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  61.05.cp (X-ray diffraction)  
Fund: Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, China (Grant No. 2020B1212030010) and Project of Faculty of Agricultural Equipment of Jiangsu University (Grant No. NZXB20210202) are acknowledged.
Corresponding Authors:  M M Chen     E-mail:  andychain@live.cn

Cite this article: 

S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰) Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films 2024 Chin. Phys. B 33 098701

[1] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653
[2] Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kucher P, Mikolajick T and Frey L 2011 Appl. Phys. Lett. 99 112901
[3] Yurchuk E, Müller J, Hoffmann R, Paul J, Martin D, Boschke R, Schlosser T, Müller S, Slesazeck S, Bentum R, Trentzsch M, Schröder U and Mikolajick T 2012 4th IEEE International Memory Workshop, 20-23 May 2012 p. 1
[4] Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K and Ye P D 2019 Nat. Electron. 2 580
[5] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412
[6] Yun Y, Buragohain P, Li M, Ahmadi Z, Zhang Y, Li X, Wang H, Li J, Lu P, Tao L, Wang H, Shield J E, Tsymbal E Y, Gruverman A and Xu X 2022 Nat. Mater. 21 903
[7] Kozodaev M G, Chernikova A G, Korostylev E V, Park M H, Schroeder U, Hwang C S and Markeev A M 2017 Appl. Phys. Lett. 111 132903
[8] Boscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[9] Lomenzo P D, Zhao P, Takmeel Q, Moghaddam S, Nishida T, Nelson M, Fancher C M, Grimley E D, Sang X, LeBeau J M and Jones J L 2014 J. Vac. Sci. Technol. B 32 03D123
[10] Zhou Y, Zhang Y K, Yang Q, Jiang J, Fan P, Liao M and Zhou Y C 2019 Comp. Mater. Sci. 167 143
[11] Rushchanskii K Z, Blügel S and Ležaić M 2021 Phys. Rev. Lett. 127 087602
[12] Chen S, Qin P, Yang J, Chen M, Du Q, Kong Y, Liu Y and Cao D 2023 J. Alloys Compd. 965 171456
[13] Lee J C, Oh S J, Cho M, Hwang C S and Jung R 2004 Appl. Phys. Lett. 84 1305
[14] Chen H, Tang L, Liu L B X, Chen Y, Luo H, Yuan X and Zhang D 2021 Appl. Surf. Sci. 542 148737
[15] Starschich S, Menzel S and Böttger U 2016 Appl. Phys. Lett. 108 032903
[16] Kang S, Jang W, Morozovska A N, Kwon O, Jin Y, Kim Y H, Bae H, Wang C, Yang S H, Belianinov A, Randolph S, Eliseev E A, Collins L, Park Y, Jo S, Jung M H, Go K J, Cho H W, Choi S Y, Jang J H, Kim S, Jeong H Y, Lee J, Ovchinnikova O S, Heo J, Kalinin S V, Kim Y M and Kim Y 2022 Science 376 731
[17] Su M, Liu J, Weng Z, Ding X, Chen Z, Zhang Y, Zhao L, Lee C and Zhao Y 2021 Appl. Phys. Express 14 126503
[18] Pal A, Narasimhan V K, Weeks S, Littau K, Pramanik D and Chiang T 2017 Appl. Phys. Lett. 110 022903
[19] Su M, Gao S, Weng Z, Zhao L, Lee C and Zhao Y 2022 IEEE Electr. Device Lett. 43 1057
[20] Szyjka T, Baumgarten L, Mittmann T, Matveyev Y, Schlueter C, Mikolajick T, Schroeder U and Müller M 2020 ACS Appl. Electron. Mater. 2 3152
[21] Cao R, Wang Y, Zhao S, Yang Y, Zhao X, Wang W, Zhang X, Lv H, Liu Q and Liu M 2018 IEEE Electr. Device Lett. 39 1207
[22] Huo S, Zheng J, Liu Y, Li Y, Tao R, Lu X and Liu J 2023 Chin. Phys. B 32 127701
[23] Batra R, Huan T D, Jones J L, Rossetti G J and Ramprasad R 2017 J. Phys. Chem. C 121 4139
[24] Liu S and Hanrahan B M 2019 Phys. Rev. Mater. 3 054404
[25] Qi Y, Singh S, Lau C, Huang F T, Xu X, Walker F J, Ahn C H, Cheong S and Rabe K M 2020 Phys. Rev. Lett. 125 257603
[26] Fan S T, Chen Y W and Liu C W 2020 J. Phys. D Appl. Phys. 53 23LT01
[27] Behara S S and Van der Ven A 2022 Phys. Rev. Mater. 6 054403
[28] Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J and Sánchez F 2019 ACS Appl. Electron. Mater. 1 1449
[29] Song T, Tan H, Estandía S, Gàzquez J, Gich M, Dix N, Fina I and Sanchez F 2022 Nanoscale 14 2337
[30] Wei Y, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Íñiguez J, Dkhil B and Noheda B 2018 Nat. Mater. 17 1095
[31] Zhang Y, Wang D, Luo C, Cheng J, Huo S, Zhang B, Tao R, Chen D, Fan Z, Dai J Y, Lu X and Liu J M 2022 IEEE T. Electron Dev. 69 3094
[32] Xiao D Q, Luo B B, Xiong W, Wu X, Zhang D W and Ding S J 2021 IEEE T. Electron Dev. 68 6359
[33] Batra R, Tran H D and Ramprasad R 2016 Appl. Phys. Lett. 108 172902
[34] Materlik R, Künneth C and Kersch A 2015 J. Appl. Phys. 117 134109
[35] Park M H, Lee Y H, Kim H J, Schenk T, Lee W, Kim K D, Fengler F P G, Mikolajick T, Schroeder U and Hwang C S 2017 Nanoscale 9 9973
[36] Mimura T, Shimizu T, Sakata O and Funakubo H 2021 Phys. Rev. Mater. 5 114407
[37] Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J and Funakubo H 2015 Appl. Phys. Lett. 107 032910
[38] Deng Y, Yang W, Lin X, Liao N, Zhu B, Yang Q, Jiang J and Jiang L 2023 Comp. Mater. Sci. 221 112036
[39] Kashir A, Oh S and Hwang H 2021 Adv. Eng. Mater. 23 2000791
[40] Lee K, Park K, Lee H, Song M S, Lee K C, Namkung J, Lee J H, Park J and Chae S C 2021 Sci. Rep. 11 6290
[41] Shi S, Xi H, Cao T, Lin W, Liu Z, Niu J, Lan D, Zhou C, Cao J, Su H, Zhao T, Yang P, Zhu Y, Yan X, Tsymbal E Y, Tian H and Chen J 2023 Nat. Commun. 14 1780
[42] Patil R N and Subbarao E C 1969 J. Appl. Crystallogr. 2 281
[43] Okada Y and Tokumaru Y 1984 J. Appl. Phys. 56 314
[44] Kim S K, Jeong S Y and Cho C R 2003 Appl. Phys. Lett. 82 562
[45] Cho S B and Mishra R 2018 Appl. Phys. Lett. 112 162101
[1] Observing ferroelastic switching in Hf0.5Zr0.5O2 thin film
Zhao Guan(关赵), Tao Wang(王陶), Yunzhe Zheng(郑赟喆), Yue Peng(彭悦), Luqi Wei(魏鹿奇), Yuke Zhang(张宇科), Abliz Mattursun(阿卜力孜cdot麦提图尔荪), Jiahao Huang(黄家豪), Wen-Yi Tong(童文旖), Genquan Han(韩根全), Binbin Chen(陈斌斌), Ping-Hua Xiang(向平华), Chun-Gang Duan(段纯刚), and Ni Zhong(钟妮). Chin. Phys. B, 2024, 33(6): 067701.
[2] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[3] Influence of compressive strain on the incorporation of indium in InGaN and InAlN ternary alloys
Zhao Yi (赵一), Zhang Jin-Cheng (张进成), Xue Jun-Shuai (薛军帅), Zhou Xiao-Wei (周小伟), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(1): 017302.
[1] LI YAN-FANG (李燕芳), MOU JIAN-XUN (牟建勋), YAN JUN-JUE (严隽珏), YANG WEI-SHENG (杨威生). ATOMIC CHARGE SUPERPOSITION CALCULATIONS OF STM IMAGES OF 2D-ORDERED AMINO ACID ADSORBATES(Ⅱ)[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(2): 139 -146 .
[2] CHEN XUE-JUN (陈学俊), CHEN ZI-TAO (陈子韬), QIAN QING (钱青), FU YUN-CHANG (伏云昌). CROSS SECTIONS OF ANTIHYDROGEN FORMATION IN COLLISIONS OF ANTIPROTONS WITH POSITRONIUM[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(2): 89 -99 .
[3] WANG ZHEN-XIA (王震遐), PAN JI-SHENG (潘冀生), ZHANG JI-PING (章骥平), TAO ZHEN-LAN (陶振兰), ZHU FU-YING (朱福英), ZHAO LIE (赵烈), ZHANG HUI-MING (张慧明). INVESTIGATION OF ION SPUTTERING FOR EUTECTIC Cu-37 at% Ag ALLOY[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(9): 702 -710 .
[4] CHE GUANG-CAN (车广灿), DU YU-KOU (杜玉扣), JIA SHUN-LIAN (贾顺莲), YANG YE (杨晔), ZHAO ZHONG-XIAN (赵忠贤). PREPARATION, SUPERCONDUCTIVITY AND STRUCTURE OF THE LaBaCaCu3O7-x SUPERCONDUCTORS WITH Tc HIGHER THAN 80 K[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(1): 64 -70 .
[5] WANG KAI-GE (汪凯戈). PHASE MATCHING AND DISTRIBUTION OF OPTICAL VORTICES IN THREE COUPLING DEGENERATE GAUSS-LAGUERRE MODES[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(11): 814 -820 .
[6] WANG LIU-SHUI (王柳水), LIN ZUN-QI (林尊琪), ZHANG HUI-HUANG (章辉煌), HE XING-FA (何兴法), WANG DONG-JUN (王东君), LIN KANG-CHUN (林康春), GUAN FU-YI (管富义), WANG XIAO-QIN (王笑琴), LIN MING-YI (林鸣逸), WEI XIAO-CHUN (韦小春), HOU QING (候氢), LI JIA-MING (李家明), SHENG JIA-TIAN (盛家田), ZHANG GUO-PING (张国平). “PPAS” X-RAY ABSORPTION SPECTROSCOPY IN LASER-PRODUCED ALUMINUM PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(12): 909 -916 .
[7] SHI ZHI-XIANG (施智祥), JI HE-LIN (吉和林), ZHANG YI-TONG (张贻瞳), JIN XIN (金新), XU XIAO-NONG (徐小农), DING SHI-YING (丁世英), YAO XI-XIAN (姚希贤), WANG CHANG-AN (王长安), WANG RUI-LAN (王瑞兰), LI HONG-CHENG (李宏成), ZHANG HUI (张晖), SUN ZHI-JIAN (孙志坚), YANG SEN-ZU (杨森祖). FLUX CREEP, FLUX PINNING AND CRITICAL CURRENT DENSITY OF Y-, Gd-, AND Tl-BASED SUPERCONDUCTIVE THIN FILMS[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(2): 124 -130 .
[8] YANG JIN-LONG (杨金龙), ZHANG MAN-HONG (张满红), XIA SHANG-DA (夏上达), WANG KE-LIN (汪克林). GEOMETRIC AND ELECTRONIC STRUCTURES OF Ti8C12 CLUSTER[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(3): 169 -175 .
[9] ZHANG SHU-YUAN (张庶元), LI FAN-QING (李凡庆), ZUO JIAN (左健), TAN SHUN (谭舜), XU CUN-YI (许存义), LU BIN (陆斌), CHEN ZHI-WEN (陈志文). MICROSTRUCTURE AND LUMINESCENCE PROPERTIES OF GaxIn1-xP/GaAs HETEROSTRUCTURE[J]. Acta Physica Sinica (Overseas Edition), 1994, 3(3): 182 -189 .
[10] FU SHI-YOU (傅石友), GUO YU-FENG (郭余峰), WANG MING-JI (王明吉), ZHANG PENG-XIANG (张鹏翔). STUDY OF HOMOGENEOUS ADSORPTION KINETICS OF CRYSTAL VIOLET[J]. Acta Physica Sinica (Overseas Edition), 1995, 4(10): 721 -726 .