INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films |
S X Chen(陈思学)1, M M Chen(陈明明)1,†, Y Liu(刘圆)1, D W Cao(曹大威)2, and G J Chen(陈国杰)3 |
1 Department of Microelectronics, Jiangsu University, Zhenjiang 212013, China; 2 Department of Physics, Jiangsu University, Zhenjiang 212013, China; 3 Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China |
|
|
Abstract Ferroelectric HfO$_{2}$ has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor (CMOS) technology. However, the crystallization of polar orthorhombic phase (o-phase) HfO$_{2}$ is less competitive, which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO$_{2}$ thin films. Fortunately, the crystallization of o-phase HfO$_{2}$ can be thermodynamically modulated via interfacial stress engineering. In this paper, the growth of improved ferroelectric Al doped HfO$_{2}$ (HfO$_{2}$:Al) thin films on (111)-oriented Si substrate has been reported. Structural analysis has suggested that nonpolar monoclinic HfO$_{2}$:Al grown on (111)-oriented Si substrate suffered from a strong compressive strain, which promoted the crystallization of (111)-oriented o-phase HfO$_{2}$ in the as-grown HfO$_{2}$:Al thin films. In addition, the in-plane lattice of (111)-oriented Si substrate matches well with that of (111)-oriented o-phase HfO$_{2}$, which further thermally stabilizes the o-phase HfO$_{2}$. Accordingly, an improved ferroelectricity with a remnant polarization (2$P_{\rm r}$) of 26.7 μC/cm$^{2}$ has been obtained. The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO$_{2}$ thin films.
|
Received: 28 January 2024
Revised: 22 May 2024
Accepted manuscript online: 24 May 2024
|
PACS:
|
87.15.Zg
|
(Phase transitions)
|
|
64.60.Ej
|
(Studies/theory of phase transitions of specific substances)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, China (Grant No. 2020B1212030010) and Project of Faculty of Agricultural Equipment of Jiangsu University (Grant No. NZXB20210202) are acknowledged. |
Corresponding Authors:
M M Chen
E-mail: andychain@live.cn
|
Cite this article:
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰) Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films 2024 Chin. Phys. B 33 098701
|
[1] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653 [2] Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kucher P, Mikolajick T and Frey L 2011 Appl. Phys. Lett. 99 112901 [3] Yurchuk E, Müller J, Hoffmann R, Paul J, Martin D, Boschke R, Schlosser T, Müller S, Slesazeck S, Bentum R, Trentzsch M, Schroder U and Mikolajick T 2012 4th IEEE International Memory Workshop, 20-23 May 2012 p. 1 [4] Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K and Ye P D 2019 Nat. Electron. 2 580 [5] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412 [6] Yun Y, Buragohain P, Li M, Ahmadi Z, Zhang Y, Li X, Wang H, Li J, Lu P, Tao L, Wang H, Shield J E, Tsymbal E Y, Gruverman A and Xu X 2022 Nat. Mater. 21 903 [7] Kozodaev M G, Chernikova A G, Korostylev E V, Park M H, Schroeder U, Hwang C S and Markeev A M 2017 Appl. Phys. Lett. 111 132903 [8] Boscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903 [9] Lomenzo P D, Zhao P, Takmeel Q, Moghaddam S, Nishida T, Nelson M, Fancher C M, Grimley E D, Sang X, LeBeau J M and Jones J L 2014 J. Vac. Sci. Technol. B 32 03D123 [10] Zhou Y, Zhang Y K, Yang Q, Jiang J, Fan P, Liao M and Zhou Y C 2019 Comp. Mater. Sci. 167 143 [11] Rushchanskii K Z, Blügel S and Lezaić M 2021 Phys. Rev. Lett. 127 087602 [12] Chen S, Qin P, Yang J, Chen M, Du Q, Kong Y, Liu Y and Cao D 2023 J. Alloys Compd. 965 171456 [13] Lee J C, Oh S J, Cho M, Hwang C S and Jung R 2004 Appl. Phys. Lett. 84 1305 [14] Chen H, Tang L, Liu L B X, Chen Y, Luo H, Yuan X and Zhang D 2021 Appl. Surf. Sci. 542 148737 [15] Starschich S, Menzel S and Böttger U 2016 Appl. Phys. Lett. 108 032903 [16] Kang S, Jang W, Morozovska A N, Kwon O, Jin Y, Kim Y H, Bae H, Wang C, Yang S H, Belianinov A, Randolph S, Eliseev E A, Collins L, Park Y, Jo S, Jung M H, Go K J, Cho H W, Choi S Y, Jang J H, Kim S, Jeong H Y, Lee J, Ovchinnikova O S, Heo J, Kalinin S V, Kim Y M and Kim Y 2022 Science 376 731 [17] Su M, Liu J, Weng Z, Ding X, Chen Z, Zhang Y, Zhao L, Lee C and Zhao Y 2021 Appl. Phys. Express 14 126503 [18] Pal A, Narasimhan V K, Weeks S, Littau K, Pramanik D and Chiang T 2017 Appl. Phys. Lett. 110 022903 [19] Su M, Gao S, Weng Z, Zhao L, Lee C and Zhao Y 2022 IEEE Electr. Device Lett. 43 1057 [20] Szyjka T, Baumgarten L, Mittmann T, Matveyev Y, Schlueter C, Mikolajick T, Schroeder U and Müller M 2020 ACS Appl. Electron. Mater. 2 3152 [21] Cao R, Wang Y, Zhao S, Yang Y, Zhao X, Wang W, Zhang X, Lv H, Liu Q and Liu M 2018 IEEE Electr. Device Lett. 39 1207 [22] Huo S, Zheng J, Liu Y, Li Y, Tao R, Lu X and Liu J 2023 Chin. Phys. B 32 127701 [23] Batra R, Huan T D, Jones J L, Rossetti G J and Ramprasad R 2017 J. Phys. Chem. C 121 4139 [24] Liu S and Hanrahan B M 2019 Phys. Rev. Mater. 3 054404 [25] Qi Y, Singh S, Lau C, Huang F T, Xu X, Walker F J, Ahn C H, Cheong S and Rabe K M 2020 Phys. Rev. Lett. 125 257603 [26] Fan S T, Chen Y W and Liu C W 2020 J. Phys. D Appl. Phys. 53 23LT01 [27] Behara S S and Van der Ven A 2022 Phys. Rev. Mater. 6 054403 [28] Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J and Sánchez F 2019 ACS Appl. Electron. Mater. 1 1449 [29] Song T, Tan H, Estandía S, Gazquez J, Gich M, Dix N, Fina I and Sánchez F 2022 Nanoscale 14 2337 [30] Wei Y, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Íñiguez J, Dkhil B and Noheda B 2018 Nat. Mater. 17 1095 [31] Zhang Y, Wang D, Luo C, Cheng J, Huo S, Zhang B, Tao R, Chen D, Fan Z, Dai J Y, Lu X and Liu J M 2022 IEEE T. Electron Dev. 69 3094 [32] Xiao D Q, Luo B B, Xiong W, Wu X, Zhang D W and Ding S J 2021 IEEE T. Electron Dev. 68 6359 [33] Batra R, Tran H D and Ramprasad R 2016 Appl. Phys. Lett. 108 172902 [34] Materlik R, Künneth C and Kersch A 2015 J. Appl. Phys. 117 134109 [35] Park M H, Lee Y H, Kim H J, Schenk T, Lee W, Kim K D, Fengler F P G, Mikolajick T, Schroeder U and Hwang C S 2017 Nanoscale 9 9973 [36] Mimura T, Shimizu T, Sakata O and Funakubo H 2021 Phys. Rev. Mater. 5 114407 [37] Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J and Funakubo H 2015 Appl. Phys. Lett. 107 032910 [38] Deng Y, Yang W, Lin X, Liao N, Zhu B, Yang Q, Jiang J and Jiang L 2023 Comp. Mater. Sci. 221 112036 [39] Kashir A, Oh S and Hwang H 2021 Adv. Eng. Mater. 23 2000791 [40] Lee K, Park K, Lee H, Song M S, Lee K C, Namkung J, Lee J H, Park J and Chae S C 2021 Sci. Rep. 11 6290 [41] Shi S, Xi H, Cao T, Lin W, Liu Z, Niu J, Lan D, Zhou C, Cao J, Su H, Zhao T, Yang P, Zhu Y, Yan X, Tsymbal E Y, Tian H and Chen J 2023 Nat. Commun. 14 1780 [42] Patil R N and Subbarao E C 1969 J. Appl. Crystallogr. 2 281 [43] Okada Y and Tokumaru Y 1984 J. Appl. Phys. 56 314 [44] Kim S K, Jeong S Y and Cho C R 2003 Appl. Phys. Lett. 82 562 [45] Cho S B and Mishra R 2018 Appl. Phys. Lett. 112 162101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|