Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 085203    DOI: 10.1088/1674-1056/ad4532
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab

Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏)†
State Key Laboratory for Tunnel Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract  This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target. In contrast to previous one-dimensional analytical models, this paper innovatively fits the real laser conditions based on an isothermal, homogeneous expansion similarity solution of the ideal hydrodynamic equations. Using this simple model, the evolution law and analytical formulae for key parameters (e.g., temperature, density and scale length) in the corona region under certain conditions are given. The analytical solutions agree well with the relevant results of computational hydrodynamics simulation. For constant laser irradiation, the analytical solutions provide a meaningful power-law scaling relationship. The model provides a set of mathematical and physical tools that give theoretical support for adjusting parameters in experiments.
Keywords:  plasma      self-similarity method      fluid dynamics calculations  
Received:  27 February 2024      Revised:  25 April 2024      Accepted manuscript online: 
PACS:  52.38.-r (Laser-plasma interactions)  
  47.85.Dh (Hydrodynamics, hydraulics, hydrostatics)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25051000) and the National Natural Science Foundation of China (Grant No. 11574390).
Corresponding Authors:  Ying-Jun Li     E-mail:  lyj@aphy.iphy.ac.cn

Cite this article: 

Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏) Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab 2024 Chin. Phys. B 33 085203

[1] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C and Knauer J P 2006 Phys. Rev. Lett. 97 135003
[2] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Landen O L, Knauer J P and Smalyuk V A 2007 Phys. Rev. Lett. 99 055001
[3] Yates M A, Van Hulsteyn D B, Rutkowski H, Kyrala G and Brackbill J U 1982 Phys. Rev. Lett. 49 1702
[4] Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G and Zhang J 2010 Nat. Phys. 6 984
[5] Zhong J Y, Lin J and Li Y T, et al. 2016 Astrophys. J. Suppl. Ser. 225 30
[6] Lebedev S V, Frank A and Ryutov D D 2019 Rev. Mod. Phys. 91 025002
[7] Takabe H and Kuramitsu Y 2021 High Power Laser Sci. Eng. 9 e49
[8] Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X and Nilson P M 2014 Phys. Rev. Lett. 113 105003
[9] Zhong J Y, Yuan X X, Han B, Sun W and Ping Y L 2018 High Power Laser Sci. Eng. 6 e48
[10] Kodama R, Norreys P A, Mima K, et al. 2001 Nature 412 798
[11] Wilks S C, Kruer W L, Tabak M and Langdon A B 1992 Phys. Rev. Lett. 69 1383
[12] Borghesi M, Fuchs J, Bulanov S V, MacKinnon A J, Patel P K and Roth M 2006 Fusion Sci. Technol. 49 412
[13] Liu Z D, Zhong J Y, Yuan X H, et al. 2023 Chin. Phys. B 32 110702
[14] Zylstra A B, Hurricane O A, Callahan D A, et al. 2022 Nature 601 542
[15] Abu-Shawareb H, Acree R, Adams P, et al. 2022 Phys. Rev. Lett. 129 075001
[16] Hu S X, Ceurvorst L, Peebles J L, et al. 2023 Phys. Rev. E 108 035209
[17] Zhang C L, Zhang Y H, Yuan X H, et al. 2024 Chin. Phys. B 33 025201
[18] Bel’kov S A, Bondarenko S V, Demchenko N N, Garanin S G, Gus’kov S Y, Kuchugov P A, Rozanov V B, Stepanov R V, Yakhin R A and Zmitrenko N V 2019 Plasma Phys. Control. Fusion 61 025011
[19] Niemann C, Divol L, Froula D H, Gregori G, Jones O, Kirkwood R K, MacKinnon A J, Meezan N B, Moody J D, Sorce C, Suter L J, Bahr R, Seka W and Glenzer S H 2005 Phys. Rev. Lett. 94 085005
[20] Stevenson R M, Suter L J, Oades K, Kruer W, Slark G E, Fournier K B, Meezan N, Kauffman R, Miller M, Glenzer S, Niemann C, Grun J, Davis J, Back C and Thomas B 2004 Phys. Plasmas 11 2709
[21] Li Y J and Zhang J 2001 Phys. Rev. E 63 036410
[22] Li Y J, Lu X and Zhang J 2002 Phys. Rev. E 66 046501
[23] Cheng T, Li Y J, Meng L M and Zhang J 2008 Europhys. Lett. 84 45001
[24] London R A and Rosen M D 1986 Phys. Fluids 29 3813
[25] Chen D, Cai D F and Su H S 2023 Chin. Phys. B 32 098903
[26] Chen M Z, Wang L Y, Liu G, Ge C Q, Li D C and Liang Q X 2023 Chin. Phys. B 32 048103
[27] Zheng W D and Zhang G P 2007 Chin. Phys. 16 2439
[28] Zhang Z R and Huang J P 2022 Chin. Phys. Lett. 39 075201
[29] Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H and Wang Y N 2022 Chin. Phys. B 31 085202
[30] Sanz J, Garnier J, Cherfils C, Canaud B, Masse L and Temporal M 2005 Phys. Plasmas 12 112702
[31] Zhu Z Y, Liu Y X, Li Y J and Zhang J 2022 Chin. Phys. B 31 105202
[32] Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755
[33] Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
[34] Bobin J L, Colombant D and Tonon G 1972 Nucl. Fusion 12 445
[35] Sigel R, Tsakiris G D, Lavarenne F, et al. 1990 Phys. Rev. Lett. 65 587
[36] De Groot J S, Estabrook K G, Kruer W L, Drake R P, Mizuno K and Cameron S M 1992 Phys. Fluids B 4 701
[1] Tunable energy spectrum betatron x-ray sources in a plasma wakefield
Chuan-Yi Xi(奚传易), Yin-Ren Shou(寿寅任), Li-Qi Han(韩立琦), Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提), Xiao-Dan Liu(刘晓丹), Yan-Ying Zhao(赵研英), and Jin-Qing Yu(余金清). Chin. Phys. B, 2024, 33(8): 085202.
[2] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[3] Power transfer efficiency in an air-breathing radio frequency ion thruster
Gao-Huang Huang(黄高煌), Hong Li(李宏), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2024, 33(7): 075201.
[4] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[5] Velocity analysis of supersonic jet flow in double-cone ignition scheme
Zhong-Yuan Zhu(朱仲源), Cheng-Long Zhang(张成龙), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(6): 065203.
[6] Effect of trace oxygen on plasma nitriding of titanium foil
Hai-Tao Zhou(周海涛), Xi-Ya Xiong(熊希雅), Ke-Xin Ma(马可欣), Bing-Wei Luo(罗炳威), Fei Luo(罗飞), and Cheng-Min Shen(申承民). Chin. Phys. B, 2024, 33(6): 068103.
[7] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[8] Characteristics of the electromagnetic wave propagation in magnetized plasma sheath and practical method for blackout mitigation
Xiang Wu(吴翔), Jiahui Zhang(张珈珲), Guoxiang Dong(董果香), and Lei Shi(石磊). Chin. Phys. B, 2024, 33(5): 055201.
[9] Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
Ming-Xing Wu(吴明兴), Kai Xie(谢楷), Yan Liu(刘艳), Han Xu(徐晗), Bao Zhang(张宝), and De-Yang Tian(田得阳). Chin. Phys. B, 2024, 33(5): 055204.
[10] Magnetic diagnostics layout design for CFETR plasma equilibrium reconstruction
Qingze Yu(于庆泽), Yao Huang(黄耀), Zhengping Luo(罗正平), Yuehang Wang(汪悦航), Zijie Liu(刘自结), Wangyi Rui(芮望颐), Kai Wu(吴凯), Bingjia Xiao(肖炳甲), and Jiangang Li(李建刚). Chin. Phys. B, 2024, 33(4): 045201.
[11] Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
Wen Wang(王文), Tao Xu(徐涛), Yi Zhang(张仪), and the J-TEXT team. Chin. Phys. B, 2024, 33(4): 045202.
[12] Influence of extraction voltage on electron and ion behavior characteristics
Ao Xu(徐翱), Pingping Gan(甘娉娉), Yuanjie Shi(石元杰), and Lei Chen(陈磊). Chin. Phys. B, 2024, 33(4): 045203.
[13] Plasma potential measurements using an emissive probe made of oxide cathode
Jian-Quan Li(李建泉), Hai-Jie Ma(马海杰), and Wen-Qi Lu(陆文琪). Chin. Phys. B, 2024, 33(4): 045205.
[14] Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter
Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇). Chin. Phys. B, 2024, 33(4): 045206.
[15] Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies
Chao Wang(王超), Jia Liu(刘佳), Lei Chang(苌磊), Ling-Feng Lu(卢凌峰), Shi-Jie Zhang(张世杰), and Fan-Tao Zhou(周帆涛). Chin. Phys. B, 2024, 33(3): 035201.
No Suggested Reading articles found!