PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab |
Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏)† |
State Key Laboratory for Tunnel Engineering, China University of Mining and Technology, Beijing 100083, China |
|
|
Abstract This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target. In contrast to previous one-dimensional analytical models, this paper innovatively fits the real laser conditions based on an isothermal, homogeneous expansion similarity solution of the ideal hydrodynamic equations. Using this simple model, the evolution law and analytical formulae for key parameters (e.g., temperature, density and scale length) in the corona region under certain conditions are given. The analytical solutions agree well with the relevant results of computational hydrodynamics simulation. For constant laser irradiation, the analytical solutions provide a meaningful power-law scaling relationship. The model provides a set of mathematical and physical tools that give theoretical support for adjusting parameters in experiments.
|
Received: 27 February 2024
Revised: 25 April 2024
Accepted manuscript online:
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
47.85.Dh
|
(Hydrodynamics, hydraulics, hydrostatics)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25051000) and the National Natural Science Foundation of China (Grant No. 11574390). |
Corresponding Authors:
Ying-Jun Li
E-mail: lyj@aphy.iphy.ac.cn
|
Cite this article:
Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏) Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab 2024 Chin. Phys. B 33 085203
|
[1] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C and Knauer J P 2006 Phys. Rev. Lett. 97 135003 [2] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Landen O L, Knauer J P and Smalyuk V A 2007 Phys. Rev. Lett. 99 055001 [3] Yates M A, Van Hulsteyn D B, Rutkowski H, Kyrala G and Brackbill J U 1982 Phys. Rev. Lett. 49 1702 [4] Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G and Zhang J 2010 Nat. Phys. 6 984 [5] Zhong J Y, Lin J and Li Y T, et al. 2016 Astrophys. J. Suppl. Ser. 225 30 [6] Lebedev S V, Frank A and Ryutov D D 2019 Rev. Mod. Phys. 91 025002 [7] Takabe H and Kuramitsu Y 2021 High Power Laser Sci. Eng. 9 e49 [8] Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X and Nilson P M 2014 Phys. Rev. Lett. 113 105003 [9] Zhong J Y, Yuan X X, Han B, Sun W and Ping Y L 2018 High Power Laser Sci. Eng. 6 e48 [10] Kodama R, Norreys P A, Mima K, et al. 2001 Nature 412 798 [11] Wilks S C, Kruer W L, Tabak M and Langdon A B 1992 Phys. Rev. Lett. 69 1383 [12] Borghesi M, Fuchs J, Bulanov S V, MacKinnon A J, Patel P K and Roth M 2006 Fusion Sci. Technol. 49 412 [13] Liu Z D, Zhong J Y, Yuan X H, et al. 2023 Chin. Phys. B 32 110702 [14] Zylstra A B, Hurricane O A, Callahan D A, et al. 2022 Nature 601 542 [15] Abu-Shawareb H, Acree R, Adams P, et al. 2022 Phys. Rev. Lett. 129 075001 [16] Hu S X, Ceurvorst L, Peebles J L, et al. 2023 Phys. Rev. E 108 035209 [17] Zhang C L, Zhang Y H, Yuan X H, et al. 2024 Chin. Phys. B 33 025201 [18] Bel’kov S A, Bondarenko S V, Demchenko N N, Garanin S G, Gus’kov S Y, Kuchugov P A, Rozanov V B, Stepanov R V, Yakhin R A and Zmitrenko N V 2019 Plasma Phys. Control. Fusion 61 025011 [19] Niemann C, Divol L, Froula D H, Gregori G, Jones O, Kirkwood R K, MacKinnon A J, Meezan N B, Moody J D, Sorce C, Suter L J, Bahr R, Seka W and Glenzer S H 2005 Phys. Rev. Lett. 94 085005 [20] Stevenson R M, Suter L J, Oades K, Kruer W, Slark G E, Fournier K B, Meezan N, Kauffman R, Miller M, Glenzer S, Niemann C, Grun J, Davis J, Back C and Thomas B 2004 Phys. Plasmas 11 2709 [21] Li Y J and Zhang J 2001 Phys. Rev. E 63 036410 [22] Li Y J, Lu X and Zhang J 2002 Phys. Rev. E 66 046501 [23] Cheng T, Li Y J, Meng L M and Zhang J 2008 Europhys. Lett. 84 45001 [24] London R A and Rosen M D 1986 Phys. Fluids 29 3813 [25] Chen D, Cai D F and Su H S 2023 Chin. Phys. B 32 098903 [26] Chen M Z, Wang L Y, Liu G, Ge C Q, Li D C and Liang Q X 2023 Chin. Phys. B 32 048103 [27] Zheng W D and Zhang G P 2007 Chin. Phys. 16 2439 [28] Zhang Z R and Huang J P 2022 Chin. Phys. Lett. 39 075201 [29] Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H and Wang Y N 2022 Chin. Phys. B 31 085202 [30] Sanz J, Garnier J, Cherfils C, Canaud B, Masse L and Temporal M 2005 Phys. Plasmas 12 112702 [31] Zhu Z Y, Liu Y X, Li Y J and Zhang J 2022 Chin. Phys. B 31 105202 [32] Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755 [33] Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524 [34] Bobin J L, Colombant D and Tonon G 1972 Nucl. Fusion 12 445 [35] Sigel R, Tsakiris G D, Lavarenne F, et al. 1990 Phys. Rev. Lett. 65 587 [36] De Groot J S, Estabrook K G, Kruer W L, Drake R P, Mizuno K and Cameron S M 1992 Phys. Fluids B 4 701 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|