Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 075201    DOI: 10.1088/1674-1056/ad426c
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Power transfer efficiency in an air-breathing radio frequency ion thruster

Gao-Huang Huang(黄高煌)1, Hong Li(李宏)2,†, Fei Gao(高飞)1,‡, and You-Nian Wang(王友年)1
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2 College of Physical Science and Technology, Dalian University, Dalian 116622, China
Abstract  Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of $Q$ factor. In pure N$_{2}$ discharge, with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N$_{2}$/O$_{2}$ discharge, increasing the N$_{2}$ content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
Keywords:  radio frequency ion thruster      inductively coupled plasma      power transfer efficiency      analytic solution  
Received:  03 March 2024      Revised:  09 April 2024      Accepted manuscript online:  24 April 2024
PACS:  52.25.Jm (Ionization of plasmas)  
  52.27.Cm (Multicomponent and negative-ion plasmas)  
  52.50.Dg (Plasma sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005031 and 12275041) and the Natural Science Fund from the Interdisciplinary Project of Dalian University (Grant No. DLUXK-2023-QN-001).
Corresponding Authors:  Hong Li, Fei Gao     E-mail:  lihong10@dlu.edu.cn;fgao@dlut.edu.cn

Cite this article: 

Gao-Huang Huang(黄高煌), Hong Li(李宏), Fei Gao(高飞), and You-Nian Wang(王友年) Power transfer efficiency in an air-breathing radio frequency ion thruster 2024 Chin. Phys. B 33 075201

[1] Crisp N H, Roberts P C E, Livadiotti S, Oiko V T A, Edmondson S, Haigh S J, Huyton C, Sinpetru L A, Smith K L, Worrall S D, Becedas J, Domínguez R M, González D, Hanessian V, Mølgaard A, Nielsen J, Bisgaard M, Chan Y A, Fasoulas S, Herdrich G H, Romano F, Traub C, García-Almiñana D, Rodríguez-Donaire S, Sureda M, Kataria D, Outlaw R, Belkouchi B, Conte A, Perez J S, Villain R, Heißerer B and Schwalber A 2020 Prog. Aeronaut. Sci. 117 100619
[2] Steiger C, Romanazzo M, Emanuelli P P, Floberghagen R and Fehringer M 2014 Proceedings of the 13rd International Conference on Space Operations, May 5-9, 2014, Pasadena, USA, p. 1934
[3] Di Cara D, Gonzalez del Amo J, Santovincenzo A, Carnicero Domíguez B, Arcioni M, Caldwell A and Roma I 2007 Proceedings of the 30th International Electric Propulsion Conference, September 17-20, 2007, Florence, Italy, Vol. 21 p. 22
[4] Schonherr T, Komurasaki K, Romano F, Massuti-Ballester B and Herdrich G 2015 IEEE Trans. Plasma Sci. 43 287
[5] Tisaev M, Ferrato E, Giannetti V, Paissoni C, Baresi N, Lucca Fabris A and Andreussi T 2022 Acta Astronaut. 191 374
[6] Cifali G, Misuri T, Rossetti P, Andrenucci M, Valentian D and Feili D 2011 Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 31-August 03, 2011, San Diego, USA, p. 6073
[7] Andreussi T, Ferrato E, Giannetti V, Piragino A, Paissoni C A, Cifali G and Andrenucci M 2019 Proceedings of the AIAA Propulsion and Energy 2019 Forum, August 19-22, 2019, Indianapolis, USA, p. 3995
[8] Kozhevnikov V V, Smirnov P E, Suvorov M O and Khartov S A 2017 Therm. Eng. 64 952
[9] Killinger R, Kukies R, Surauer M, Tomasetto A and van Holtz L 2003 Acta Astronaut. 53 607
[10] Groh K H and Loebtt H W 1991 J. Propul. Power 7 573
[11] Bathgate S N, Bilek M M M and Mckenzie D R 2017 Plasma Sci. Technol. 19 083001
[12] Li Y H, Chen Y C, Liu S W and Aslan A R 2023 Acta Astronaut. 208 130
[13] Lee H C, Kim D H and Chung C W 2013 Appl. Phys. Lett. 102 234104
[14] Daltrini A M, Moshkalev S A, Morgan T J, Piejak R B and Graham W G 2008 Appl. Phys. Lett. 92 061504
[15] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203
[16] Ostrikov K N, Xu S and Yu M Y 2000 J. Appl. Phys. 88 2268
[17] Liu W, Gao F, Zhao S X, Li X C and Wang Y N 2013 Phys. Plasmas 20 123513
[18] Tyshetskiy Y O, Smolyakov A I and Godyak V A 2002 Plasma Sources Sci. Technol. 11 203
[19] Godyak V A and Kolobov V I 1998 Phys. Rev. Lett. 81 369
[20] Godyak V A, Piejak R B, Alexandrovich B M and Kolobov V I 1998 Phys. Rev. Lett. 80 3264
[21] Li H, Gao F, Wen D Q, Yang W, Du P C and Wang Y N 2019 J. Appl. Phys. 125 173303
[22] Jain P, Recchia M, Cavenago M, Fantz U, Gaio E, Kraus W, Maistrello A and Veltri P 2018 Plasma Phys. Contr. Fusion 60 045007
[23] Zielke D, Briefi S and Fantz U 2021 J. Phys. D: Appl. Phys. 54 155202
[24] Kralkina E A, Rukhadze A A, Pavlov V B, Vavilin K V, Nekliudova P A, Petrov A K and Alexandrov A F 2016 Plasma Sources Sci. Technol. 25 015016
[25] Chabert P, Arancibia Monreal J, Bredin J, Popelier L and Aanesland A 2012 Phys. Plasmas 19 073512
[26] Zheng P, Wu J, Zhang Y, Che B and Li J 2021 Acta Astronaut. 187 236
[27] Lopez-Uricoechea J, Lev D and Walker M L R 2022 J. Electr. Propuls. 1 11
[28] Masillo S, Romano F, Soglia R, Herdrich G, Roberts P, Schönherr T, Binder T, Boxberger A, Traub C, Fasoulas S, Smith K, Edmondson S, Haigh S, Crisp N, Toshiyuki V, Oiko V, Lyons R, Worrall S, Livadiotti S and Pavarin D 2018 Proceedings of the 7th RussianGerman Conference on Electric Propulsions, October 21-26, 2018, Rauischholzhausen, German
[29] Herdrich G and Petkow D 2008 J. Plasma Phys. 74 391
[30] Dietz P, Gärtner W, Koch Q, Köhler P E, Teng Y, Schreiner P R, Holste K and Klar P J 2019 Plasma Sources Sci. Technol. 28 084001
[31] Schmidt J, Laufer R, Hyde T and Herdrich G 2020 Vacuum 176 109338
[32] Wu J, Zheng P, Zhang Y and Tang H 2022 Prog. Aerosp. Sci. 133 100848
[33] Suzuki K, Konishi K, Nakamura K and Sugai H 2000 Plasma Sources Sci. Technol. 9 199
[34] Han D, Lee H C, Kim H J, Kim Y S, Chung C W and Chae H 2013 Plasma Sources Sci. Technol. 22 055011
[35] Kim T W, Kim J H, Lee M Y and Chung C W 2020 Phys. Plasmas 27 073505
[36] Chen F F 2001 Phys. Plasmas 8 3029
[37] Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525
[38] Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas, (Cambridge: Cambridge University Press)
[39] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley)
[40] Hopwood J 1994 Plasma Sources Sci. Technol. 3 460
[41] Godyak V A, Piejak R B and Alexandrovich B M 1999 J. Appl. Phys. 85 703
[42] Godyak V A and Alexandrovich B M 2017 Rev. Sci. Instrum. 88 083512
[43] Thorsteinsson E G and Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001
[44] Picone J M, Hedin A E, Drob D P and Aikin A C 2002 J. Geophys. Res. 107 SIA 15
[45] Li Y, Chen X, Li D, Xiao Y, Dai P and Gong C 2015 Vacuum 120 89
[46] Tagawa M, Yokota K, Nishiyama K, Kuninaka H, Yoshizawa Y, Yamamoto D and Tsuboi T 2013 J. Propul. Power 29 501
[47] NRLMSISE-00 Atmosphere Model, 2023 https://kauai.ccmc.gsfc.nasa.gov/instantrun/nrlmsis/
[48] LXCat, Plasma Data Exchange Project, 2023, https://nl.lxcat.net/
[49] Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008
[50] Du P C, Zhao M L, Li H, Gao F and Wang Y N 2022 J. Appl. Phys. 131 133301
[1] Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions
Zhiqiang Sun(孙志强), Guolin Hou(侯国林), Yanfen Qiao(乔艳芬), and Jincun Liu (刘金存). Chin. Phys. B, 2024, 33(1): 016107.
[2] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[3] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[4] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[5] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[6] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[7] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[8] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[9] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[10] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[11] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[12] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[13] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[14] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[15] Nonlinear tunneling through a strong rectangular barrier
Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东). Chin. Phys. B, 2015, 24(7): 070311.
No Suggested Reading articles found!