PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Power transfer efficiency in an air-breathing radio frequency ion thruster |
Gao-Huang Huang(黄高煌)1, Hong Li(李宏)2,†, Fei Gao(高飞)1,‡, and You-Nian Wang(王友年)1 |
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China; 2 College of Physical Science and Technology, Dalian University, Dalian 116622, China |
|
|
Abstract Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of $Q$ factor. In pure N$_{2}$ discharge, with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N$_{2}$/O$_{2}$ discharge, increasing the N$_{2}$ content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
|
Received: 03 March 2024
Revised: 09 April 2024
Accepted manuscript online: 24 April 2024
|
PACS:
|
52.25.Jm
|
(Ionization of plasmas)
|
|
52.27.Cm
|
(Multicomponent and negative-ion plasmas)
|
|
52.50.Dg
|
(Plasma sources)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005031 and 12275041) and the Natural Science Fund from the Interdisciplinary Project of Dalian University (Grant No. DLUXK-2023-QN-001). |
Corresponding Authors:
Hong Li, Fei Gao
E-mail: lihong10@dlu.edu.cn;fgao@dlut.edu.cn
|
Cite this article:
Gao-Huang Huang(黄高煌), Hong Li(李宏), Fei Gao(高飞), and You-Nian Wang(王友年) Power transfer efficiency in an air-breathing radio frequency ion thruster 2024 Chin. Phys. B 33 075201
|
[1] Crisp N H, Roberts P C E, Livadiotti S, Oiko V T A, Edmondson S, Haigh S J, Huyton C, Sinpetru L A, Smith K L, Worrall S D, Becedas J, Domínguez R M, González D, Hanessian V, Mølgaard A, Nielsen J, Bisgaard M, Chan Y A, Fasoulas S, Herdrich G H, Romano F, Traub C, García-Almiñana D, Rodríguez-Donaire S, Sureda M, Kataria D, Outlaw R, Belkouchi B, Conte A, Perez J S, Villain R, Heißerer B and Schwalber A 2020 Prog. Aeronaut. Sci. 117 100619 [2] Steiger C, Romanazzo M, Emanuelli P P, Floberghagen R and Fehringer M 2014 Proceedings of the 13rd International Conference on Space Operations, May 5-9, 2014, Pasadena, USA, p. 1934 [3] Di Cara D, Gonzalez del Amo J, Santovincenzo A, Carnicero Domíguez B, Arcioni M, Caldwell A and Roma I 2007 Proceedings of the 30th International Electric Propulsion Conference, September 17-20, 2007, Florence, Italy, Vol. 21 p. 22 [4] Schonherr T, Komurasaki K, Romano F, Massuti-Ballester B and Herdrich G 2015 IEEE Trans. Plasma Sci. 43 287 [5] Tisaev M, Ferrato E, Giannetti V, Paissoni C, Baresi N, Lucca Fabris A and Andreussi T 2022 Acta Astronaut. 191 374 [6] Cifali G, Misuri T, Rossetti P, Andrenucci M, Valentian D and Feili D 2011 Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 31-August 03, 2011, San Diego, USA, p. 6073 [7] Andreussi T, Ferrato E, Giannetti V, Piragino A, Paissoni C A, Cifali G and Andrenucci M 2019 Proceedings of the AIAA Propulsion and Energy 2019 Forum, August 19-22, 2019, Indianapolis, USA, p. 3995 [8] Kozhevnikov V V, Smirnov P E, Suvorov M O and Khartov S A 2017 Therm. Eng. 64 952 [9] Killinger R, Kukies R, Surauer M, Tomasetto A and van Holtz L 2003 Acta Astronaut. 53 607 [10] Groh K H and Loebtt H W 1991 J. Propul. Power 7 573 [11] Bathgate S N, Bilek M M M and Mckenzie D R 2017 Plasma Sci. Technol. 19 083001 [12] Li Y H, Chen Y C, Liu S W and Aslan A R 2023 Acta Astronaut. 208 130 [13] Lee H C, Kim D H and Chung C W 2013 Appl. Phys. Lett. 102 234104 [14] Daltrini A M, Moshkalev S A, Morgan T J, Piejak R B and Graham W G 2008 Appl. Phys. Lett. 92 061504 [15] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203 [16] Ostrikov K N, Xu S and Yu M Y 2000 J. Appl. Phys. 88 2268 [17] Liu W, Gao F, Zhao S X, Li X C and Wang Y N 2013 Phys. Plasmas 20 123513 [18] Tyshetskiy Y O, Smolyakov A I and Godyak V A 2002 Plasma Sources Sci. Technol. 11 203 [19] Godyak V A and Kolobov V I 1998 Phys. Rev. Lett. 81 369 [20] Godyak V A, Piejak R B, Alexandrovich B M and Kolobov V I 1998 Phys. Rev. Lett. 80 3264 [21] Li H, Gao F, Wen D Q, Yang W, Du P C and Wang Y N 2019 J. Appl. Phys. 125 173303 [22] Jain P, Recchia M, Cavenago M, Fantz U, Gaio E, Kraus W, Maistrello A and Veltri P 2018 Plasma Phys. Contr. Fusion 60 045007 [23] Zielke D, Briefi S and Fantz U 2021 J. Phys. D: Appl. Phys. 54 155202 [24] Kralkina E A, Rukhadze A A, Pavlov V B, Vavilin K V, Nekliudova P A, Petrov A K and Alexandrov A F 2016 Plasma Sources Sci. Technol. 25 015016 [25] Chabert P, Arancibia Monreal J, Bredin J, Popelier L and Aanesland A 2012 Phys. Plasmas 19 073512 [26] Zheng P, Wu J, Zhang Y, Che B and Li J 2021 Acta Astronaut. 187 236 [27] Lopez-Uricoechea J, Lev D and Walker M L R 2022 J. Electr. Propuls. 1 11 [28] Masillo S, Romano F, Soglia R, Herdrich G, Roberts P, Schönherr T, Binder T, Boxberger A, Traub C, Fasoulas S, Smith K, Edmondson S, Haigh S, Crisp N, Toshiyuki V, Oiko V, Lyons R, Worrall S, Livadiotti S and Pavarin D 2018 Proceedings of the 7th RussianGerman Conference on Electric Propulsions, October 21-26, 2018, Rauischholzhausen, German [29] Herdrich G and Petkow D 2008 J. Plasma Phys. 74 391 [30] Dietz P, Gärtner W, Koch Q, Köhler P E, Teng Y, Schreiner P R, Holste K and Klar P J 2019 Plasma Sources Sci. Technol. 28 084001 [31] Schmidt J, Laufer R, Hyde T and Herdrich G 2020 Vacuum 176 109338 [32] Wu J, Zheng P, Zhang Y and Tang H 2022 Prog. Aerosp. Sci. 133 100848 [33] Suzuki K, Konishi K, Nakamura K and Sugai H 2000 Plasma Sources Sci. Technol. 9 199 [34] Han D, Lee H C, Kim H J, Kim Y S, Chung C W and Chae H 2013 Plasma Sources Sci. Technol. 22 055011 [35] Kim T W, Kim J H, Lee M Y and Chung C W 2020 Phys. Plasmas 27 073505 [36] Chen F F 2001 Phys. Plasmas 8 3029 [37] Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525 [38] Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas, (Cambridge: Cambridge University Press) [39] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley) [40] Hopwood J 1994 Plasma Sources Sci. Technol. 3 460 [41] Godyak V A, Piejak R B and Alexandrovich B M 1999 J. Appl. Phys. 85 703 [42] Godyak V A and Alexandrovich B M 2017 Rev. Sci. Instrum. 88 083512 [43] Thorsteinsson E G and Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001 [44] Picone J M, Hedin A E, Drob D P and Aikin A C 2002 J. Geophys. Res. 107 SIA 15 [45] Li Y, Chen X, Li D, Xiao Y, Dai P and Gong C 2015 Vacuum 120 89 [46] Tagawa M, Yokota K, Nishiyama K, Kuninaka H, Yoshizawa Y, Yamamoto D and Tsuboi T 2013 J. Propul. Power 29 501 [47] NRLMSISE-00 Atmosphere Model, 2023 https://kauai.ccmc.gsfc.nasa.gov/instantrun/nrlmsis/ [48] LXCat, Plasma Data Exchange Project, 2023, https://nl.lxcat.net/ [49] Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008 [50] Du P C, Zhao M L, Li H, Gao F and Wang Y N 2022 J. Appl. Phys. 131 133301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|