Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 085202    DOI: 10.1088/1674-1056/ad4531
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Tunable energy spectrum betatron x-ray sources in a plasma wakefield

Chuan-Yi Xi(奚传易)1, Yin-Ren Shou(寿寅任)2, Li-Qi Han(韩立琦)1, Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提)1, Xiao-Dan Liu(刘晓丹)1, Yan-Ying Zhao(赵研英)3,†, and Jin-Qing Yu(余金清)1
1 Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea;
3 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
Abstract  X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths. However, existing x-ray sources face difficulties in terms of energy regulation. In this paper, we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield. The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density, thereby extending the control range by an order of magnitude. At different central energies, the brightness of the betatron radiation is in the range of $3.7\times 10^{22}$ to $5.5\times 10^{22} $ photons/(0.1%BW$\cdot$s$\cdot$mm$^{2}\cdot$mrad$^{2}$) and the photon divergence angle is about 2 mrad. This high-brightness, energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy, such as phase-contrast imaging in medicine, non-destructive testing and material analysis in industry, and imaging in nuclear physics.
Keywords:  betatron      plasma physics      x-ray      plasma wakefield acceleration (PWFA)  
Received:  27 February 2024      Revised:  23 April 2024      Accepted manuscript online: 
PACS:  52.38.Ph (X-ray, γ-ray, and particle generation)  
  52.40.-w (Plasma interactions (nonlaser))  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11921006 and 12175058), the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No. SQ2019YFF01014400), and the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z231100006023003). The PIC code EPOCH was in part funded by United Kingdom EPSRC (Grant Nos. EP/G054950/1, EP/G056803/1, EP/G055165/1, and EP/M022463/1).
Corresponding Authors:  Yan-Ying Zhao     E-mail:  zhaoyanying@pku.edu.cn

Cite this article: 

Chuan-Yi Xi(奚传易), Yin-Ren Shou(寿寅任), Li-Qi Han(韩立琦), Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提), Xiao-Dan Liu(刘晓丹), Yan-Ying Zhao(赵研英), and Jin-Qing Yu(余金清) Tunable energy spectrum betatron x-ray sources in a plasma wakefield 2024 Chin. Phys. B 33 085202

[1] Hogan M J, Barnes C D, Clayton C E, et al. 2005 Phys. Rev. Lett. 95 054802
[2] Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696
[3] Strickland D and Mourou G 1985 Opt. Commun. 55 447
[4] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[5] Chen P, Dawson J M, Huff R W and Katsouleas T 1985 Phys. Rev. Lett. 54 693
[6] Kiselev S, Pukhov A and Kostyukov I 2004 Phys. Rev. Lett. 93 135004
[7] Pfeifer T, Spielmann C and Gerber G 2006 Rep. Prog. Phys. 69 443
[8] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002
[9] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801
[10] Liu J, Lu H, Lu H, et al. 2023 Phys. Plasmas. 30 113103
[11] Zhao Y, Lehe R, Myers A, et al. 2020 Phys. Plasmas. 27 113105
[12] Lundh O, Lim J, Rechatin C, et al. 2011 Nat. Phys. 7 219
[13] Miller K G, Palastro J P, Shaw J L, et al. 2023 Phys. Plasmas. 30 073902
[14] Kneip S, Nagel S R, Martins S F, et al. 2009 Phys. Rev. Lett. 103 035002
[15] Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F and Karsch S 2015 Nat. Commun. 6 7568
[16] Zhao C Z, Si S Y, Zhang H P, Xue L, Li Z L and Xiao T Q 2024 Chin. Phys. B 33 014102
[17] Shao S, Li H, Yuan T, Sun X, Hua L, Liu Z and Sun T 2023 Chin. Phys. B 32 080702
[18] Mahieu B, Jourdain N, Ta Phuoc K, Dorchies F, Goddet J P, Lifschitz A, Renaudin P and Cherbourg L 2018 Nat. Commun. 9 3276
[19] Raimondi P, Benabderrahmane C, Berkvens P, et al. 2023 Commun. Phys. 6 82
[20] Fuoss P H, Liang K S and Eisenberger P 1992 Synchrotron Radiation Research Vol. 1
[21] Pellegrini C, Marinelli A and Reiche S 2016 Rev. Mod. Phys. 88 015006
[22] Zhang Y, Wang H W, Ma Y G, Liu L X, Cao X G, Fan G T, Zhang G Q and Fang D Q 2019 Nucl. Sci. Tech. 30 87
[23] Albert F 2023 Phys. Plasmas 30 050902
[24] Corde S, Phuoc K T, Fitour R, Faure J, Tafzi A, Goddet J P, Malka V and Rousse A 2011 Phys. Rev. Lett. 107 255003
[25] Huang T, Robinson A, Zhou C, Qiao B, Liu B, Ruan S, He X and Norreys P 2016 Phys. Rev. E 93 063203
[26] erri J, Davoine X, Kalmykov S Y and Lifschitz A 2016 Phys. Rev. Accel. Beams 19 101301
[27] Balerna A and Mobilio S 2014 Introduction to Synchrotron Radiation: Basics, Methods and Applications (Springer) p. 3
[28] Leemans W, Gonsalves A, Mao H S, et al. 2014 Phys. Rev. Lett. 113 245002
[29] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[30] Joshi C and Katsouleas T 2003 Phys. Today 56 47
[31] Ferri J, Corde S, Dopp A, Lifschitz A, Döche A, Thaury C, Ta Phuoc K, Mahieu B, Andriyash A, Malka V and Davoine X 2018 Phys. Rev. Lett. 120 254802
[32] Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E 2013 Rev. Mod. Phys. 85 1
[33] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D and Hulin D 2004 Phys. Rev. Lett. 93 135005
[34] Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P and Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070704
[35] Xie B S, Wu H C, Wang H, Wang N Y and Yu M 2007 Phys. Plasmas 14 073103
[36] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709
[37] Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301
[38] Esarey E, Shadwick B A, Catravas P and Leemans W P 2002 Phys. Rev. E 65 056505
[39] Kostyukov I, Kiselev S and Pukhov A 2003 Phys. Plasmas 10 4818
[40] Phuoc K T, Burgy F, Rousseau J P, Malka V, Rousse A, Shah R, Umstadter D, Pukhov A and Kiselev S 2005 Phys. Plasmas 12 023101
[41] Pukhov A, Gordienko S, Kiselev S and Kostyukov I 2004 Plasma Phys. Control. Fusion 46 B179
[42] Chen P, Su J J, Dawson J M, Bane KL F and Wilson P B 1986 Phys. Rev. Lett. 56 1252
[43] Ferri J, Davoine X, Kalmykov S and Lifschitz A 2016 Phys. Rev. Accel. Beams 19 101301
[44] Arber T, Bennett K, Brady C, et al. 2015 Plasma Phys. Control. Fusion 57 113001
[45] Teixeira F L, Sarris C, Zhang Y, et al. 2023 Nat. Rev. Methods Primers 3 75
[46] Litos M, Adli E, An W, et al. 2014 Nature 515 92
[47] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[48] Liang L, Xia G, Saberi H, Farmer J P and Pukhov A 2022 arXiv preprint arXiv:2204.13199
[49] Lu W, Huang C, Zhou M, Mori W and Katsouleas T 2005 Phys. Plasmas 12
[50] Heine R 2021 Phys. Rev. Accel. Beams 24 011602
[51] Baistrukov M and Lotov K 2022 Plasma Phys. Control. Fusion 64 075003
[52] Rosenzweig J B, Breizman B, Katsouleas T and Su J 1991 Phys. Rev. A 44 R6189
[53] Huang C, Lu W, Zhou M,et al. 2007 Phys. Rev. Lett. 99 255001
[54] San Miguel Claveria P, Adli E, et al. 2019 Phil. Trans. Roy. Soc. A 377 20180173
[55] Bjorklund Svensson J, Guenot D, Ferri J, Ekerfelt H, Gallardo Gonzalez I, Persson A, Svendsen K, Veisz L and Lundh O 2021 Nat. Phys. 17 639
[1] Theory and verification of moiré fringes for x-ray three-phase grating interferometer
Yu-Zheng Shan(单雨征), Yong-Shuai Ge(葛永帅), Jun Yang(杨君), Da-Yu Guo(郭大育), Xue-Bao Cai(蔡学宝), Xiao-Ke Liu(刘晓珂), Xiao-Wen Hou(侯晓文), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2024, 33(5): 056101.
[2] In situ observation of the phase transformation kinetics of bismuth during shock release
Jiangtao Li(李江涛), Qiannan Wang(王倩男), Liang Xu(徐亮), Lei Liu(柳雷), Hang Zhang(张航), Sota Takagi, Kouhei Ichiyanagi, Ryo Fukaya, Shunsuke Nozawa, and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(4): 046401.
[3] Development of a monochromatic crystal backlight imager for the recent double-cone ignition experiments
Chenglong Zhang(张成龙), Yihang Zhang(张翌航), Xiaohui Yuan(远晓辉), Zhe Zhang(张喆), Miaohua Xu(徐妙华), Yu Dai(戴羽), Yufeng Dong(董玉峰), Haochen Gu(谷昊琛), Zhengdong Liu(刘正东), Xu Zhao(赵旭), Yutong Li(李玉同), Yingjun Li(李英骏), Jianqiang Zhu(朱健强), and Jie Zhang(张杰). Chin. Phys. B, 2024, 33(2): 025201.
[4] Theoretical characterization of the adsorption configuration of pyrrole on Si(100) surface by x-ray spectroscopy
Hao-Qing Li(李好情), Jing Ming(明静), Zhi-Ang Jiang(姜志昂), Hai-Bo Li(李海波), Yong Ma(马勇), and Xiu-Neng Song(宋秀能). Chin. Phys. B, 2024, 33(2): 026102.
[5] Intensity correlation properties of x-ray beams split with Laue diffraction
Chang-Zhe Zhao(赵昌哲), Shang-Yu Si(司尚禹), Hai-Peng Zhang(张海鹏), Lian Xue(薛莲), Zhong-Liang Li(李中亮), and Ti-Qiao Xiao(肖体乔). Chin. Phys. B, 2024, 33(1): 014102.
[6] Core-level spectroscopy of the photodissociation process of BrCN molecule
Kun Zhou(周坤) and Han Wang(王涵). Chin. Phys. B, 2024, 33(1): 018702.
[7] Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉),Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
[8] Glancing incidence x-ray fluorescence spectrometry based on a single-bounce parabolic capillary
Shangkun Shao(邵尚坤), Huiquan Li(李惠泉), Tianyu Yuan(袁天语), Xuepeng Sun(孙学鹏), Lu Hua(华路), Zhiguo Liu(刘志国), and Tianxi Sun(孙天希). Chin. Phys. B, 2023, 32(8): 080702.
[9] L-shell x-ray fluorescence relative intensities for elements with 62 ≤ Z ≤ 83 at 18 keV and 23 keV by synchrotron radiation
M Alqadi, S AL-Humaidi, H Alkhateeb, and F Alzoubi. Chin. Phys. B, 2023, 32(8): 083201.
[10] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[11] Relaxation of Ne1+ 1s02s22p6np produced by resonant excitation of an ultraintense ultrafast x-ray pulse
Jie Yan(闫杰), Yanpeng Liu(刘彦鹏), Yong Hou(侯永), Cheng Gao(高城), Jianhua Wu(吴建华), Jiaolong Zeng(曾交龙), and Jianmin Yuan(袁建民). Chin. Phys. B, 2023, 32(6): 063101.
[12] Theoretical study of the enhancement of saturable absorption of Kr under x-ray free-electron laser
Jiaxin Ye(叶佳鑫), Yixuan Yang(杨怡璇), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(5): 053202.
[13] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[14] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagnetic properties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[15] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
No Suggested Reading articles found!