PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Tunable energy spectrum betatron x-ray sources in a plasma wakefield |
Chuan-Yi Xi(奚传易)1, Yin-Ren Shou(寿寅任)2, Li-Qi Han(韩立琦)1, Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提)1, Xiao-Dan Liu(刘晓丹)1, Yan-Ying Zhao(赵研英)3,†, and Jin-Qing Yu(余金清)1 |
1 Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea; 3 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China |
|
|
Abstract X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths. However, existing x-ray sources face difficulties in terms of energy regulation. In this paper, we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield. The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density, thereby extending the control range by an order of magnitude. At different central energies, the brightness of the betatron radiation is in the range of $3.7\times 10^{22}$ to $5.5\times 10^{22} $ photons/(0.1%BW$\cdot$s$\cdot$mm$^{2}\cdot$mrad$^{2}$) and the photon divergence angle is about 2 mrad. This high-brightness, energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy, such as phase-contrast imaging in medicine, non-destructive testing and material analysis in industry, and imaging in nuclear physics.
|
Received: 27 February 2024
Revised: 23 April 2024
Accepted manuscript online:
|
PACS:
|
52.38.Ph
|
(X-ray, γ-ray, and particle generation)
|
|
52.40.-w
|
(Plasma interactions (nonlaser))
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11921006 and 12175058), the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No. SQ2019YFF01014400), and the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z231100006023003). The PIC code EPOCH was in part funded by United Kingdom EPSRC (Grant Nos. EP/G054950/1, EP/G056803/1, EP/G055165/1, and EP/M022463/1). |
Corresponding Authors:
Yan-Ying Zhao
E-mail: zhaoyanying@pku.edu.cn
|
Cite this article:
Chuan-Yi Xi(奚传易), Yin-Ren Shou(寿寅任), Li-Qi Han(韩立琦), Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提), Xiao-Dan Liu(刘晓丹), Yan-Ying Zhao(赵研英), and Jin-Qing Yu(余金清) Tunable energy spectrum betatron x-ray sources in a plasma wakefield 2024 Chin. Phys. B 33 085202
|
[1] Hogan M J, Barnes C D, Clayton C E, et al. 2005 Phys. Rev. Lett. 95 054802 [2] Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696 [3] Strickland D and Mourou G 1985 Opt. Commun. 55 447 [4] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 [5] Chen P, Dawson J M, Huff R W and Katsouleas T 1985 Phys. Rev. Lett. 54 693 [6] Kiselev S, Pukhov A and Kostyukov I 2004 Phys. Rev. Lett. 93 135004 [7] Pfeifer T, Spielmann C and Gerber G 2006 Rep. Prog. Phys. 69 443 [8] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002 [9] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801 [10] Liu J, Lu H, Lu H, et al. 2023 Phys. Plasmas. 30 113103 [11] Zhao Y, Lehe R, Myers A, et al. 2020 Phys. Plasmas. 27 113105 [12] Lundh O, Lim J, Rechatin C, et al. 2011 Nat. Phys. 7 219 [13] Miller K G, Palastro J P, Shaw J L, et al. 2023 Phys. Plasmas. 30 073902 [14] Kneip S, Nagel S R, Martins S F, et al. 2009 Phys. Rev. Lett. 103 035002 [15] Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F and Karsch S 2015 Nat. Commun. 6 7568 [16] Zhao C Z, Si S Y, Zhang H P, Xue L, Li Z L and Xiao T Q 2024 Chin. Phys. B 33 014102 [17] Shao S, Li H, Yuan T, Sun X, Hua L, Liu Z and Sun T 2023 Chin. Phys. B 32 080702 [18] Mahieu B, Jourdain N, Ta Phuoc K, Dorchies F, Goddet J P, Lifschitz A, Renaudin P and Cherbourg L 2018 Nat. Commun. 9 3276 [19] Raimondi P, Benabderrahmane C, Berkvens P, et al. 2023 Commun. Phys. 6 82 [20] Fuoss P H, Liang K S and Eisenberger P 1992 Synchrotron Radiation Research Vol. 1 [21] Pellegrini C, Marinelli A and Reiche S 2016 Rev. Mod. Phys. 88 015006 [22] Zhang Y, Wang H W, Ma Y G, Liu L X, Cao X G, Fan G T, Zhang G Q and Fang D Q 2019 Nucl. Sci. Tech. 30 87 [23] Albert F 2023 Phys. Plasmas 30 050902 [24] Corde S, Phuoc K T, Fitour R, Faure J, Tafzi A, Goddet J P, Malka V and Rousse A 2011 Phys. Rev. Lett. 107 255003 [25] Huang T, Robinson A, Zhou C, Qiao B, Liu B, Ruan S, He X and Norreys P 2016 Phys. Rev. E 93 063203 [26] erri J, Davoine X, Kalmykov S Y and Lifschitz A 2016 Phys. Rev. Accel. Beams 19 101301 [27] Balerna A and Mobilio S 2014 Introduction to Synchrotron Radiation: Basics, Methods and Applications (Springer) p. 3 [28] Leemans W, Gonsalves A, Mao H S, et al. 2014 Phys. Rev. Lett. 113 245002 [29] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 [30] Joshi C and Katsouleas T 2003 Phys. Today 56 47 [31] Ferri J, Corde S, Dopp A, Lifschitz A, Döche A, Thaury C, Ta Phuoc K, Mahieu B, Andriyash A, Malka V and Davoine X 2018 Phys. Rev. Lett. 120 254802 [32] Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E 2013 Rev. Mod. Phys. 85 1 [33] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D and Hulin D 2004 Phys. Rev. Lett. 93 135005 [34] Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P and Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070704 [35] Xie B S, Wu H C, Wang H, Wang N Y and Yu M 2007 Phys. Plasmas 14 073103 [36] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709 [37] Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301 [38] Esarey E, Shadwick B A, Catravas P and Leemans W P 2002 Phys. Rev. E 65 056505 [39] Kostyukov I, Kiselev S and Pukhov A 2003 Phys. Plasmas 10 4818 [40] Phuoc K T, Burgy F, Rousseau J P, Malka V, Rousse A, Shah R, Umstadter D, Pukhov A and Kiselev S 2005 Phys. Plasmas 12 023101 [41] Pukhov A, Gordienko S, Kiselev S and Kostyukov I 2004 Plasma Phys. Control. Fusion 46 B179 [42] Chen P, Su J J, Dawson J M, Bane KL F and Wilson P B 1986 Phys. Rev. Lett. 56 1252 [43] Ferri J, Davoine X, Kalmykov S and Lifschitz A 2016 Phys. Rev. Accel. Beams 19 101301 [44] Arber T, Bennett K, Brady C, et al. 2015 Plasma Phys. Control. Fusion 57 113001 [45] Teixeira F L, Sarris C, Zhang Y, et al. 2023 Nat. Rev. Methods Primers 3 75 [46] Litos M, Adli E, An W, et al. 2014 Nature 515 92 [47] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 [48] Liang L, Xia G, Saberi H, Farmer J P and Pukhov A 2022 arXiv preprint arXiv:2204.13199 [49] Lu W, Huang C, Zhou M, Mori W and Katsouleas T 2005 Phys. Plasmas 12 [50] Heine R 2021 Phys. Rev. Accel. Beams 24 011602 [51] Baistrukov M and Lotov K 2022 Plasma Phys. Control. Fusion 64 075003 [52] Rosenzweig J B, Breizman B, Katsouleas T and Su J 1991 Phys. Rev. A 44 R6189 [53] Huang C, Lu W, Zhou M,et al. 2007 Phys. Rev. Lett. 99 255001 [54] San Miguel Claveria P, Adli E, et al. 2019 Phil. Trans. Roy. Soc. A 377 20180173 [55] Bjorklund Svensson J, Guenot D, Ferri J, Ekerfelt H, Gallardo Gonzalez I, Persson A, Svendsen K, Veisz L and Lundh O 2021 Nat. Phys. 17 639 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|