Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077202    DOI: 10.1088/1674-1056/ad498a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions

Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾)†
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510631, China
Abstract  We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to $2e$ both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to $4e$ in the inner gap region but may reduce to about $2e$ in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
Keywords:  normal metal/superconductor tunnel junctions      shot noise      mixing of s-wave and chiral p-wave pairing      spin-orbit coupling  
Received:  28 December 2023      Revised:  20 April 2024      Accepted manuscript online:  10 May 2024
PACS:  72.10.Bg (General formulation of transport theory)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  72.25.Ba (Spin polarized transport in metals)  
  72.15.-v (Electronic conduction in metals and alloys)  
Corresponding Authors:  Liang-Bin Hu     E-mail:  lbhu26@126.com

Cite this article: 

Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾) Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions 2024 Chin. Phys. B 33 077202

[1] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill)
[2] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239
[3] Gor’kov L P and Rashba E I 2001 Phys. Rev. Lett. 87 037004
[4] Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H and Terashima T 2005 Phys. Rev. Lett. 95 247004
[5] Wu S T and Yip S 2004 Phys. Rev. B 70 104511
[6] Bauer E and Sigrist M 2012 Lecture Notes in Physics (Heidelberg: Springer)
[7] Burset P, Keidel F, Tanaka Y, Nagaosa N and Trauzettel B 2014 Phys. Rev. B 90 085438
[8] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[9] Alicea J 2010 Phys. Rev. B 81 125318
[10] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[11] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[12] Stanescu T D, Lutchyn R M and Das Sarma S 2011 Phys. Rev. B 84 144522
[13] Yamakage A, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 087003
[14] Potter A C and Lee P A 2011 Phys. Rev. B 83 184520
[15] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[16] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[17] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[18] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[19] Asano Y and Tanaka Y 2013 Phys. Rev. B 87 104513
[20] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[21] Feldman B E, Randeria M T, Li J, Jeon S, Xie Y, Wang Z, Drozdov I K, Andrei Bernevig B and Yazdani A 2017 Nat. Phys. 13 286
[22] Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D and Frolov S M 2019 Phys. Rev. Lett. 123 107703
[23] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[24] Linder J and Robinson J W A 2015 Nat. Phys. 11 307
[25] Eschrig M 2011 Physics Today 64 43
[26] Tanaka Y, Yokoyama T, Balatsky A V and Nagaosa N 2009 Phys. Rev. B 79 060505
[27] Lu C K and Yip S 2010 Phys. Rev. B 82 104501
[28] Yip S 2014 Annu. Rev. Condens. Matter Phys. 5 15
[29] Romano A, Noce C and Cuoco M 2019 Phys. Rev. B 99 224507
[30] Bøkje K and Sudbø A 2006 Phys. Rev. B 74 054506
[31] Iniotakis C, Hayashi N, Sawa Y, Yokoyama T, May U, Tanaka Y and Sigrist M 2007 Phys. Rev. B 76 012501
[32] Vorontsov A B, Vekhter I and Eschrig M 2008 Phys. Rev. Lett. 101 127003
[33] Fujimoto S 2009 Phys. Rev. B 79 220506
[34] Asano Y and Yamano S 2011 Phys. Rev. B 84 064526
[35] Klam L, Einzel D and Manske D 2009 Phys. Rev. Lett. 102 027004
[36] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[37] Blanter Y M and Büttiker M 2000 Phys. Rep. 336 1
[38] Anantram M P and Datta S 2000 Phys. Rev. B 53 16390
[39] Tanaka Y, Asai T, Yoshida N, Inoue J and Kashiwaya S 2000 Phys. Rev. B 61 11902
[40] Zhu J X and Ting C S 1999 Phys. Rev. B 59 3353
[41] de Jong M J M and Beenakker C W J 1994 Phys. Rev. B 49 16070
[42] Kane C L and Fisher M P A 1994 Phys. Rev. Lett. 72 724
[43] Landauer R 1993 Phys. Rev. B 47 16427
[44] Liu K, Xia K and Bauer G E W 2012 Phys. Rev. B 86 020408
[45] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[1] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[2] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[3] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[4] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[5] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[6] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[7] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[8] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[9] Phonon dichroism in proximitized graphene
Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(10): 106301.
[10] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[11] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[12] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[15] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
No Suggested Reading articles found!