Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077301    DOI: 10.1088/1674-1056/ad3f99
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonlinear Seebeck and Peltier effects in a Majorana nanowire coupled to leads

Feng Chi(迟锋)1,†, Jia Liu(刘佳)2, Zhenguo Fu(付振国)3, Liming Liu(刘黎明)1, and Zichuan Yi(易子川)1
1 School of Electronic and Information Engineering, UESTC of China, Zhongshan Institute, Zhongshan 528400, China;
2 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states (MBSs) at its two ends, a system named as Majorana nanowire (MNW). We consider that the MNW is coupled to the left and right normal metallic leads subjected to either bias voltage or temperature gradient. We focus our attention on the sign change of nonlinear Seebeck and Peltier coefficients induced by mechanisms related to the MBSs, by which the possible existence of MBSs might be proved. Our results show that for a fixed temperature difference between the two leads, the sign of the nonlinear Seebeck coefficient (thermopower) can be reversed by changing the overlap amplitude between the MBSs or the system equilibrium temperature, which are similar to the cases in linear response regime. By optimizing the MBS-MBS interaction amplitude and system equilibrium temperature, we find that the temperature difference may also induce sign change of the nonlinear thermopower. For zero temperature difference and finite bias voltage, both the sign and magnitude of nonlinear Peltier coefficient can be adjusted by changing the bias voltage or overlap amplitude between the MBSs. In the presence of both bias voltage and temperature difference, we show that the electrical current at zero Fermi level and the states induced by overlap between the MBSs keep unchanged, regardless of the amplitude of temperature difference. We also find that the direction of the heat current driven by bias voltage may be changed by weak temperature difference.
Keywords:  quantum dot      nonlinear Seebeck coefficient      Peltier coefficient      Majorana bound states      sign change  
Received:  11 January 2024      Revised:  13 April 2024      Accepted manuscript online:  17 April 2024
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12264037), the Innovation Team of Colleges and Universities in Guangdong Province (Grant No. 2021KCXTD040), Guangdong Province Education Department (Grant No. 2023KTSCX174), the Key Laboratory of Guangdong Higher Education Institutes (Grant No. 2023KSYS011), and Science and Technology Bureau of Zhongshan (Grant No. 2023B2035).
Corresponding Authors:  Feng Chi     E-mail:  chifeng@semi.ac.cn

Cite this article: 

Feng Chi(迟锋), Jia Liu(刘佳), Zhenguo Fu(付振国), Liming Liu(刘黎明), and Zichuan Yi(易子川) Nonlinear Seebeck and Peltier effects in a Majorana nanowire coupled to leads 2024 Chin. Phys. B 33 077301

v[1] Nayak C, Simon S H, Stern A, et al. 2008 Rev. Mod. Phys. 80 1083
[2] Alicea J, Oreg Y, Refael G, et al. 2011 Nat. Phys. 7 412
[3] Sau J D, Lutchyn R M, Tewari S and Sarma S D 2010 Phys. Rev. Lett. 104 040502
[4] Kitaev A Yu 2001 Phys. Usp. 44 131
[5] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[6] Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[7] Mourik V, Zuo K, Frolov S M, et al. 2012 Science 336 1003
[8] Deng M T, Vaitiekenas S, Hansen E B, et al. 2016 Science 354 1557
[9] Fornieri A, Whiticar A M, Setiawan F, et al. 2019 Nature 569 89
[10] Ren H, Pientka F, Hart S, et al. 2019 Nature 569 93
[11] Vattekenas S, Winkler G W, van Heck B, et al. 2020 Science 367 6485
[12] Dvir T, Wang G Z, van Loo N, et al. 2023 Nature 614 445
[13] Sun H H, Zhang K W, Hu L H, et al. 2016 Phys. Rev. Lett. 116 257003
[14] Li M, Li G, Cao L, et al. 2022 Nature 606 890
[15] Gungordu U and Kovalev A A 2022 J. Appl. Phys. 132 041101
[16] Zhang G, Li C, Li G, et al. 2023 Phys. Rev. B 107 195413
[17] Wang R, Su W, Zhu J X, et al. 2019 Phys. Rev. Lett. 122 087001
[18] Weymann I, Wojcik K P and Majek P 2020 Phys. Rev. B 101 235404
[19] Majek P and Weymann I 2022 J. Magn. Magn. Mater. 549 168935
[20] Lee S, Choi Y S, Do S H, et al. 2023 Nat. Commun. 14 7405
[21] Wang S X, Li Y X and Liu J J 2016 Chin. Phys. B 25 037304
[22] Feng G H and Zhang H H 2022 Phys. Rev. B 105 035148
[23] Ricco L S, de Souza M, Figueira M S, et al. 2019 Phys. Rev. B 99 155159
[24] Prada E, San-Jose P, de Moor M W A, et al. 2020 Nat. Rev. Phys. 2 575
[25] Zhang S, Wang Z C, Pan D, et al. 2022 Phys. Rev. Lett. 128 076803
[26] Fu L and Kane C L 2009 Phys. Rev. B 79 161408
[27] Li Y X and Bai Z M 2013 J. Appl. Phys. 114 033703
[28] Wang N, Lv S H and Li Y X 2014 J. Appl. Phys. 115 083706
[29] Gong W J, Zhang S F, Li Z C, et al. 2014 Phys. Rev. B 89 245413
[30] Xia J J, Duan S Q and Zhang W 2015 Nanoscale Res. Lett. 10 223
[31] Jiang C and Zheng Y S 2015 Solid State Commun. 212 14
[32] Hou Y C, Shtengel K, Refael G and Goldbar P M 2012 New J. Phys. 14 105005
[33] Hou Y C, Shtengel K and Refael G 2013 Phys. Rev. B 88 075304
[34] Leijinse M 2014 New. J. Phys. 16 015029
[35] López R, Lee M, Serra L and Lim J S 2014 Phys. Rev. B 89 205418
[36] Hong L, Chi F, Fu Z G, et al. 2020 J. Appl. Phys. 127 124302
[37] Chi F, Fu Z G, Liu J, et al. 2020 Nanoscale Res. Lett. 15 79
[38] David S and Rosa R 2013 Phys. Rev. Lett. 110 026804
[39] Rosa L and Sanchez D 2013 Phys. Rev. B 88 045129
[40] Zhen Y, Can Z, Jiao K Y, et al. 2021 Acta Phys. Sin. 70 108402 (in Chinese)
[41] Wang Y D, Zhu Z G and Su G 2022 Phys. Rev. B 106 035148
[42] Manaparambil A and Weymann I 2023 Phys. Rev. B 107 085404
[43] Daroca D P, Roura-Bas P and Aligia A A 2023 Phys. Rev. B 108 155117
[44] Hwang S Y, Sothmann B and Sánchez D 2023 Phys. Rev. B 107 245412
[45] Smirnov S 2015 Phys. Rev. B 92 195312
[46] Smirnov S 2017 New J. Phys. 19 063020
[47] Smirnov S 2018 Phys. Rev. B 97 165434
[48] Lim J S, Lopez R and Serra L 2012 New J. Phys. 14 083020
[49] Ramos-Andrade J P, Avalos-Ovando O, Orellana P A and Ulloa S E 2016 Phys. Rev. B 94 155436
[50] Flensberg K 2010 Phys. Rev. B 82 180516
[51] Dubi Y and Ventra M D 2013 Rev. Mod. Phys. 83 131
[1] Coulomb-assisted nonlocal electron transport between two pairs of Majorana bound states in a superconducting island
Hao-Di Wang(王浩迪), Jun-Tong Ren(任俊潼), Hai-Feng Lü(吕海峰), and Sha-Sha Ke(柯莎莎). Chin. Phys. B, 2024, 33(5): 050310.
[2] Manipulation of internal blockage in triangular triple quantum dot
Yue Qi(齐月) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2024, 33(5): 057301.
[3] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[4] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[5] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[6] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[7] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[8] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[9] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[10] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[11] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[12] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
[13] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[14] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[15] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
No Suggested Reading articles found!