CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds |
Jin-Jing Liang(梁瑾静)1,2, Xue-Kui Xi(郗学奎)1, Wen-Hong Wang(王文洪)3, and Yong-Chang Lau(刘永昌)1,2,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Tiangong University, Tianjin 300387, China |
|
|
Abstract Cubic Mn$_{2}$Ru$_{x}$Ga Heusler compound is a typical example of compensated ferrimagnet with attractive potential for high-density, ultrafast, and low-power spintronic applications. In the form of epitaxial thin films, Mn$_{2}$Ru$_{x}$Ga exhibits high spin polarization and high tunability of compensation temperature by freely changing the Ru content $x$ in a broad range ($0.3 < x < 1.0$). Herein Mn-Ru-Ga-based polycrystalline bulk buttons prepared by arc melting are systematically studied and it is found that in equilibrium bulk form, the cubic structure is unstable when $x < 0.75$. To overcome this limitation, Mn-Ru-Ga is alloyed with a fourth element V. By adjusting the content of V in the Mn$_{2}$Ru$_{0.75}$V$_{y}$Ga and Mn$_{2.25-y}$Ru$_{0.75}$V$_{y}$Ga quaternary systems, the magnetic compensation temperature is tuned. Compensation is achieved near 300 K which is confirmed by both the magnetic measurement and anomalous Hall effect measurement. The analyses of the anomalous Hall effect scaling in quaternary Mn-Ru-V-Ga alloy reveal the dominant role of skew scattering, notably that contributed caused by the thermally excited phonons, in contrast to the dominant intrinsic mechanism found in many other 3d ferromagnets and Heusler compounds. It is further shown that the Ga antisites and V content can simultaneously control the residual resistivity ratio (RRR) as well as the relative contribution of phonon and defect to the anomalous Hall effect $a''/a'$ in Mn-Ru-V-Ga, resulting in a scaling relation $a''/a' \propto $ RRR$^{1.8}$.
|
Received: 22 January 2024
Revised: 07 March 2024
Accepted manuscript online: 18 March 2024
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402600), the National Natural Science Foundation of China (Grant No. 12274438), and the Beijing Natural Science Foundation, China (Grant No. Z230006). |
Corresponding Authors:
Yong-Chang Lau
E-mail: yongchang.lau@iphy.ac.cn
|
Cite this article:
Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌) Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds 2024 Chin. Phys. B 33 077504
|
[1] Kim S K, Beach G S D, Lee K J, Ono T, Rasing T and Yang H 2022 Nat. Mater. 21 24 [2] Avci C O 2021 J. Phys. Soc. Jpn. 90 081007 [3] Liu Q, Zhu L, Zhang X S, Muller D A and Ralph D C 2022 Appl. Phys. Rev. 9 021402 [4] Zhang H, Koo J, Xu C, Sretenovic M, Yan B and Ke X 2022 Nat. Commun. 13 1091 [5] Graves C E, Reid A H, Wang T, et al. 2013 Nat. Mater. 12 293 [6] Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C and Chang J 2018 Nat. Commun. 9 959 [7] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T and Kimel A V 2011 Nature 472 205 [8] Nayak A K, Nicklas M, Chadov S, Khuntia P, Shekhar C, Kalache A, Baenitz M, Skourski Y, Guduru V K, Puri A, Zeitler U, Coey J M D and Felser C 2015 Nat. Mater. 14 679 [9] Siddiqui S A, Han J, Finley J T, Ross C A and Liu L 2018 Phys. Rev. Lett. 121 057701 [10] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J and Ono T 2017 Nat. Mater. 16 1187 [11] Zhou H A, Xu T, Bai H and Jiang W 2021 J. Phys. Soc. Jpn. 90 081006 [12] Finley J and Liu L 2020 Appl. Phys. Lett. 116 110501 [13] Hirata Y, Kim D H, Kim S, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J and Ono T 2019 Nat. Nanotechnol. 14 232 [14] Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T and Pizzini S 2021 Nano Lett. 21 2580 [15] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S and Beach G S D 2018 Nat. Nanotechnol. 13 1154 [16] Stanciu C D, Tsukamoto A, Kimel A V, Hansteen F, Kirilyuk A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 217204 [17] Uemura M, Yamagishi T, Ebisu S, Chikazawa S and Nagata S 2008 Philos. Mag. 88 209 [18] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309 [19] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B, GonzalezFuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S D and Ross C A 2018 Phys. Rev. Mater. 2 094405 [20] Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Snchez J C, Mangin S and Wang K L 2019 Adv. Mater. 31 1901681 [21] Streubel R, Lambert C H, Kent N, Ercius P, N’Diaye A T, Ophus C, Salahuddin S and Fischer P 2018 Adv. Mater. 30 1800199 [22] Céspedes-Berrocal D, Damas H, Petit-Watelot S, Maccariello D, Tang P, Arriola-Córdova A, Vallobra P, Xu Y, Bello J L, Martin E, Migot S, Ghanbaja J, Zhang S, Hehn M, Mangin S, Panagopoulos C, Cros V, Fert A and Rojas-Snchez J C 2021 Adv. Mater. 33 2007047 [23] Mitarai H, Komori T, Hirose T, Ito K, Ghosh S, Honda S, Toko K, Vila L, Attané J P, Amemiya K and Suemasu T 2020 Phys. Rev. Mater. 4 094401 [24] Zhang R, He Y, Fruchart D, Coey J M D and Gercsi Z 2022 Acta Mater. 234 118021 [25] Stinshoff R, Nayak A K, Fecher G H, Balke B, Ouardi S, Skourski Y, Nakamura T and Felser C 2017 Phys. Rev. B 95 060410 [26] Banerjee C, Teichert N, Siewierska K E, Gercsi Z, Atcheson G Y P, Stamenov P, Rode K, Coey J M D and Besbas J 2020 Nat. Commun. 11 4444 [27] Kurt H, Rode K, Stamenov P, Venkatesan M, Lau Y C, Fonda E and Coey J M D 2014 Phys. Rev. Lett. 112 027201 [28] Siewierska K E, Atcheson G, Jha A, Esien K, Smith R, Lenne S, Teichert N, O’Brien J, Coey J M D, Stamenov P and Rode K 2021 Phys. Rev. B 104 064414 [29] Betto D, Thiyagarajah N, Lau Y C, Piamonteze, Arrio M A, Stamenov P, Coey J M D and Rode Karsten 2015 Phys. Rev. B 91 094410 [30] Finley J, Lee C H, Huang P Y and Liu L 2019 Adv. Mater. 31 1805361 [31] Jamer M E, Wang Y J, Stephen G M, McDonald I J, Grutter A J, Sterbinsky G E, Arena D A, Borchers J A, Kirby B J, Lewis L H, Barbiellini B, Bansil A and Heiman D 2017 Phys. Rev. Appl. 7 064036 [32] Dou C, Xu X, Yang K, Li C, Zhang T, Zhu Z, Zhao X, Meng K, Wu Y, Chen J, Yang M, Khovalo V V and Jiang Yong 2022 Appl. Phys. Lett. 121 182403 [33] Zhu L, Zhu L, Liu Q and Lin X 2023 Phys. Rev. B 108 014420 [34] Yu J, Liu L, Deng J, Zhou C, Liu H, Poh F and Chen J 2019 J. Magn. Magn. Mater. 487 165316 [35] Davydova M D, Skirdkov P N, Zvezdin K A, Wu J C, Ciou S Z, Chiou Y R, Ye L X, Wu T H, Bhatt R C, Kimel A V and Zvezdin A K 2020 Phys. Rev. Appl. 13 034053 [36] Chen T and Malmhäl R 1983 J. Magn. Magn. Mater. 35 269 [37] Okamoto K and Miura N 1989 Physica B 155 259 [38] Liu G D, Dai X F, Liu H Y, Chen J L, Li Y X, Xiao G and Wu G H 2008 Phys. Rev. B 77 014424 [39] Kübler J 1984 Physica 127B 257 [40] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429 [41] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Ch. 39 1 [42] Zhang H G, Chen J, Liu E K, Yue M, Liu G D, Lu Q M, Wang W H and Wu G H 2019 Intermetallics 106 71 [43] Kumar K R, Kumar N H, Markandeyulu G, Chelvane J A, Neu V and Babu P D 2008 J. Magn. Magn. Mater. 320 2737 [44] Fu T, Li S, Feng X, Cui Y, Yao J, Wang B, Cao J, Shi Z, Xue D and Fan X 2021 Phys. Rev. B 103 064432 [45] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [46] Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206 [47] Hou D, Li Y, Wei D, Tian D, Wu L and Jin X 2012 J. Phys.: Condens. Matter 24 482001 [48] Zhu L, Pan D and Zhao J H 2014 Phys. Rev. B 89 220406(R) [49] Xia Z, Zhang Q, Yuan M, Liu Z and Ma X 2023 J. Alloys Compd. 937 168497 [50] Fu H, Li Y, Ma L, You C, Zhang Q and Tian N 2019 J. Magn. Magn. Mater. 473 16 [51] Mishra V, Barwal V, Pandey L, Gupta N K, Hait S, Kumar A, Sharma N, Kumar N and Chaudhary S 2022 J. Magn. Magn. Mater. 547 168837 [52] Ye L, Kang M, Liu J, Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|