Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077504    DOI: 10.1088/1674-1056/ad34c8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds

Jin-Jing Liang(梁瑾静)1,2, Xue-Kui Xi(郗学奎)1, Wen-Hong Wang(王文洪)3, and Yong-Chang Lau(刘永昌)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Tiangong University, Tianjin 300387, China
Abstract  Cubic Mn$_{2}$Ru$_{x}$Ga Heusler compound is a typical example of compensated ferrimagnet with attractive potential for high-density, ultrafast, and low-power spintronic applications. In the form of epitaxial thin films, Mn$_{2}$Ru$_{x}$Ga exhibits high spin polarization and high tunability of compensation temperature by freely changing the Ru content $x$ in a broad range ($0.3 < x < 1.0$). Herein Mn-Ru-Ga-based polycrystalline bulk buttons prepared by arc melting are systematically studied and it is found that in equilibrium bulk form, the cubic structure is unstable when $x < 0.75$. To overcome this limitation, Mn-Ru-Ga is alloyed with a fourth element V. By adjusting the content of V in the Mn$_{2}$Ru$_{0.75}$V$_{y}$Ga and Mn$_{2.25-y}$Ru$_{0.75}$V$_{y}$Ga quaternary systems, the magnetic compensation temperature is tuned. Compensation is achieved near 300 K which is confirmed by both the magnetic measurement and anomalous Hall effect measurement. The analyses of the anomalous Hall effect scaling in quaternary Mn-Ru-V-Ga alloy reveal the dominant role of skew scattering, notably that contributed caused by the thermally excited phonons, in contrast to the dominant intrinsic mechanism found in many other 3d ferromagnets and Heusler compounds. It is further shown that the Ga antisites and V content can simultaneously control the residual resistivity ratio (RRR) as well as the relative contribution of phonon and defect to the anomalous Hall effect $a''/a'$ in Mn-Ru-V-Ga, resulting in a scaling relation $a''/a' \propto $ RRR$^{1.8}$.
Keywords:  compensated ferrimagnet      anomalous Hall effect      residual resistivity ratio  
Received:  22 January 2024      Revised:  07 March 2024      Accepted manuscript online:  18 March 2024
PACS:  75.20.En (Metals and alloys)  
  75.50.Gg (Ferrimagnetics)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402600), the National Natural Science Foundation of China (Grant No. 12274438), and the Beijing Natural Science Foundation, China (Grant No. Z230006).
Corresponding Authors:  Yong-Chang Lau     E-mail:  yongchang.lau@iphy.ac.cn

Cite this article: 

Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌) Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds 2024 Chin. Phys. B 33 077504

[1] Kim S K, Beach G S D, Lee K J, Ono T, Rasing T and Yang H 2022 Nat. Mater. 21 24
[2] Avci C O 2021 J. Phys. Soc. Jpn. 90 081007
[3] Liu Q, Zhu L, Zhang X S, Muller D A and Ralph D C 2022 Appl. Phys. Rev. 9 021402
[4] Zhang H, Koo J, Xu C, Sretenovic M, Yan B and Ke X 2022 Nat. Commun. 13 1091
[5] Graves C E, Reid A H, Wang T, et al. 2013 Nat. Mater. 12 293
[6] Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C and Chang J 2018 Nat. Commun. 9 959
[7] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T and Kimel A V 2011 Nature 472 205
[8] Nayak A K, Nicklas M, Chadov S, Khuntia P, Shekhar C, Kalache A, Baenitz M, Skourski Y, Guduru V K, Puri A, Zeitler U, Coey J M D and Felser C 2015 Nat. Mater. 14 679
[9] Siddiqui S A, Han J, Finley J T, Ross C A and Liu L 2018 Phys. Rev. Lett. 121 057701
[10] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J and Ono T 2017 Nat. Mater. 16 1187
[11] Zhou H A, Xu T, Bai H and Jiang W 2021 J. Phys. Soc. Jpn. 90 081006
[12] Finley J and Liu L 2020 Appl. Phys. Lett. 116 110501
[13] Hirata Y, Kim D H, Kim S, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J and Ono T 2019 Nat. Nanotechnol. 14 232
[14] Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T and Pizzini S 2021 Nano Lett. 21 2580
[15] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S and Beach G S D 2018 Nat. Nanotechnol. 13 1154
[16] Stanciu C D, Tsukamoto A, Kimel A V, Hansteen F, Kirilyuk A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 217204
[17] Uemura M, Yamagishi T, Ebisu S, Chikazawa S and Nagata S 2008 Philos. Mag. 88 209
[18] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309
[19] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B, GonzalezFuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S D and Ross C A 2018 Phys. Rev. Mater. 2 094405
[20] Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Snchez J C, Mangin S and Wang K L 2019 Adv. Mater. 31 1901681
[21] Streubel R, Lambert C H, Kent N, Ercius P, N’Diaye A T, Ophus C, Salahuddin S and Fischer P 2018 Adv. Mater. 30 1800199
[22] Céspedes-Berrocal D, Damas H, Petit-Watelot S, Maccariello D, Tang P, Arriola-Córdova A, Vallobra P, Xu Y, Bello J L, Martin E, Migot S, Ghanbaja J, Zhang S, Hehn M, Mangin S, Panagopoulos C, Cros V, Fert A and Rojas-Snchez J C 2021 Adv. Mater. 33 2007047
[23] Mitarai H, Komori T, Hirose T, Ito K, Ghosh S, Honda S, Toko K, Vila L, Attané J P, Amemiya K and Suemasu T 2020 Phys. Rev. Mater. 4 094401
[24] Zhang R, He Y, Fruchart D, Coey J M D and Gercsi Z 2022 Acta Mater. 234 118021
[25] Stinshoff R, Nayak A K, Fecher G H, Balke B, Ouardi S, Skourski Y, Nakamura T and Felser C 2017 Phys. Rev. B 95 060410
[26] Banerjee C, Teichert N, Siewierska K E, Gercsi Z, Atcheson G Y P, Stamenov P, Rode K, Coey J M D and Besbas J 2020 Nat. Commun. 11 4444
[27] Kurt H, Rode K, Stamenov P, Venkatesan M, Lau Y C, Fonda E and Coey J M D 2014 Phys. Rev. Lett. 112 027201
[28] Siewierska K E, Atcheson G, Jha A, Esien K, Smith R, Lenne S, Teichert N, O’Brien J, Coey J M D, Stamenov P and Rode K 2021 Phys. Rev. B 104 064414
[29] Betto D, Thiyagarajah N, Lau Y C, Piamonteze, Arrio M A, Stamenov P, Coey J M D and Rode Karsten 2015 Phys. Rev. B 91 094410
[30] Finley J, Lee C H, Huang P Y and Liu L 2019 Adv. Mater. 31 1805361
[31] Jamer M E, Wang Y J, Stephen G M, McDonald I J, Grutter A J, Sterbinsky G E, Arena D A, Borchers J A, Kirby B J, Lewis L H, Barbiellini B, Bansil A and Heiman D 2017 Phys. Rev. Appl. 7 064036
[32] Dou C, Xu X, Yang K, Li C, Zhang T, Zhu Z, Zhao X, Meng K, Wu Y, Chen J, Yang M, Khovalo V V and Jiang Yong 2022 Appl. Phys. Lett. 121 182403
[33] Zhu L, Zhu L, Liu Q and Lin X 2023 Phys. Rev. B 108 014420
[34] Yu J, Liu L, Deng J, Zhou C, Liu H, Poh F and Chen J 2019 J. Magn. Magn. Mater. 487 165316
[35] Davydova M D, Skirdkov P N, Zvezdin K A, Wu J C, Ciou S Z, Chiou Y R, Ye L X, Wu T H, Bhatt R C, Kimel A V and Zvezdin A K 2020 Phys. Rev. Appl. 13 034053
[36] Chen T and Malmhäl R 1983 J. Magn. Magn. Mater. 35 269
[37] Okamoto K and Miura N 1989 Physica B 155 259
[38] Liu G D, Dai X F, Liu H Y, Chen J L, Li Y X, Xiao G and Wu G H 2008 Phys. Rev. B 77 014424
[39] Kübler J 1984 Physica 127B 257
[40] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
[41] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Ch. 39 1
[42] Zhang H G, Chen J, Liu E K, Yue M, Liu G D, Lu Q M, Wang W H and Wu G H 2019 Intermetallics 106 71
[43] Kumar K R, Kumar N H, Markandeyulu G, Chelvane J A, Neu V and Babu P D 2008 J. Magn. Magn. Mater. 320 2737
[44] Fu T, Li S, Feng X, Cui Y, Yao J, Wang B, Cao J, Shi Z, Xue D and Fan X 2021 Phys. Rev. B 103 064432
[45] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[46] Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206
[47] Hou D, Li Y, Wei D, Tian D, Wu L and Jin X 2012 J. Phys.: Condens. Matter 24 482001
[48] Zhu L, Pan D and Zhao J H 2014 Phys. Rev. B 89 220406(R)
[49] Xia Z, Zhang Q, Yuan M, Liu Z and Ma X 2023 J. Alloys Compd. 937 168497
[50] Fu H, Li Y, Ma L, You C, Zhang Q and Tian N 2019 J. Magn. Magn. Mater. 473 16
[51] Mishra V, Barwal V, Pandey L, Gupta N K, Hait S, Kumar A, Sharma N, Kumar N and Chaudhary S 2022 J. Magn. Magn. Mater. 547 168837
[52] Ye L, Kang M, Liu J, Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[1] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[2] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[3] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[4] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[5] Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7
Xin Zhang(张鑫), Zhicheng Jiang(江志诚), Jian Yuan(袁健), Xiaofei Hou(侯骁飞), Xia Wang(王霞),Na Yu(余娜), Zhiqiang Zou(邹志强), Zhengtai Liu(刘正太), Wei Xia(夏威),Zhenhai Yu(于振海), Dawei Shen(沈大伟), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(9): 097201.
[6] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[7] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films
Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松). Chin. Phys. B, 2023, 32(11): 117303.
[10] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
[11] Anomalous Hall effect in ferromagnetic LaCo2As2 and ferrimagnetic NdCo2As2
Yu-Qing Huang(黄雨晴), Peng-Yu Zheng(郑鹏宇), Rui Liu(刘瑞), Xi-Tong Xu(许锡童), Zi-Yang Wu(吴紫阳), Chao Dong(董超), Jun-Feng Wang(王俊峰), Zhi-Ping Yin(殷志平), and Shuang Jia(贾爽). Chin. Phys. B, 2023, 32(10): 107502.
[12] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[13] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[4] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[5] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[6] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[7] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[8] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[9] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[10] DENG WEN-JI (邓文基), LIU YOU-YAN (刘有延), HUANG XIU-QING (黄秀清). ON THE LOCALIZATION OF ELECTRONIC STATES IN ONE-DIMENSIONAL QUASILATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 113 -122 .