Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077505    DOI: 10.1088/1674-1056/ad34c7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel

Jie-Yao Chen(陈杰尧)1,2,†, Jia Luo(罗佳)3,†, Geng-Xin Hu(胡更新)4, Jun-Lin Wang(王君林)1,2,‡, Guan-Qi Li(李冠祺)1,2, Zhen-Dong Chen(陈振东)1,2, Xian-Yang Lu(陆显扬)4, Guo-Ping Zhao(赵国平)3,§, Yuan Liu(刘远)1, Jing Wu(吴竞)1,2, and Yong-Bing Xu(徐永兵)1,2,¶
1 School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China;
2 School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom;
3 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China;
4 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.
Keywords:  skyrmion      micromagnetic simulation      racetrack memory  
Received:  25 December 2023      Revised:  06 March 2024      Accepted manuscript online:  18 March 2024
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  12.39.Dc (Skyrmions)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2021B0101300003), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2022A1515110863 and 2023A1515010837), the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 12304136, 61427812, 11774160, 12241403, 51771127, 52171188, and 52111530143), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20192006 and BK20200307), the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380113), International Exchanges 2020 Cost Share (NSFC), China (Grant No. IEC\NSFC\201296), and the Project for Maiden Voyage of Guangzhou Basic and Applied Basic Research Scheme, China (Grant No. 2024A04J4186).
Corresponding Authors:  Jun-Lin Wang, Guo-Ping Zhao, Yong-Bing Xu     E-mail:  junlin.wang@gdut.edu.cn;zhaogp@uestc.edu.cn;yongbing.xu@york.ac.uk

Cite this article: 

Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵) Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel 2024 Chin. Phys. B 33 077505

[1] Parkin S S, Hayashi M and Thomas L 2008 Science 320 190
[2] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643
[3] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[4] Hrabec A, Sampaio J, Belmeguenai M, Gross I, Weil R, Chérif S. M, Stashkevich A, Jacques V, Thiaville A and Rohart S 2013 Nat. Nanotechnol. 8 742
[5] Roessler U. K, Bogdanov A and Pfleiderer C 2006 Nature 442 797
[6] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[7] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
[8] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M. B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[9] Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C and Xue D 2015 New J. Phys. 17 023061
[10] Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 31LT01
[11] Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261
[12] Liu Y, Yin G, Zang J, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411
[13] Zhang X, Ezawa M, Xiao D, Zhao G, Liu Y and Zhou Y 2015 Nanotechnology 26 225701
[14] Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G and Givord D 2017 Nano Lett. 17 3006
[15] Zhang S, Zhang J, Wen Y, Chudnovsky E M and Zhang X 2018 Appl. Phys. Lett. 113 192403
[16] Wang Z, Guo M, Zhou H A, Zhao L, Xu T, Tomasello R, Bai H, Dong Y, Je S G, Chao W, Han H S, Lee S, Lee K S, Yao Y, Han W, Song C, Wu H, Carpentieri M, Finocchio G, Im M Y, Lin S Z and Jiang W 2020 Nat. Electron. 3 672
[17] Song L, Yang H, Liu B, Meng H, Cao Y and Yan P 2021 J. Magn. Magn. Mater. 532 167975
[18] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J 2020 Nat. Commun. 11 3577
[19] Hou Z, Wang Y, Lan X, Li S, Wan X, Meng F, Hu Y, Fan Z, Feng C, Qin M, Zeng M, Zhang X, Liu X, Fu X, Yu G, Zhou G, Zhou Y, Zhao W, Gao X and Liu J M 2021 Adv. Mater. 34 e2107908
[20] Zhang H, Zhang Y, Hou Z, Qin M, Gao X and Liu J 2023 Materials Futures 2 032201
[21] Guang Y, Zhang L, Zhang J, et al. 2023 Adv. Electron. Mater. 9 2200570
[22] Yang S, Son J W, Ju T S, et al. 2023 Adv. Mater. 35 2208881
[23] Zázvorka J, Jakobs F, Heinze D, et al. 2019 Nat. Nanotechnol. 14 658
[24] Yao Y, Chen X, Kang W, et al. 2020 IEEE Trans. Electron Dev. 67 2553
[25] Yan Z R, Liu Y Z, Guang Y, Yue K, Feng J F, Lake R K, Yu G Q and Han X F 2021 Phys. Rev. Appl. 15 064004
[26] Wang J, Xia J, Zhang X, Zhao G. P, Ye L, Wu J, Xu Y, Zhao W, Zou Z and Zhou Y 2018 J. Phys. D: Appl. Phys. 51 205002
[27] Hu G, Luo J, Wang J, Lu X, Zhao G, Liu Y, Wu J and Xu Y 2023 J. Phys. D: Appl. Phys. 56 085001
[28] Wang J, Xia J, Zhang X, et al. 2020 Appl. Phys. Lett. 117 202401
[29] Tomasello R, Guslienko K Y, Ricci M, et al. 2018 Phys. Rev. B 97 060402
[30] Zhao L, Wang Z, Zhang X, et al. 2020 Phys. Rev. Lett. 125 027206
[31] Wang J, Strungaru M, Ruta S, Meo A, Zhou Y, Deák A, Szunyogh L, Gavriloaea P I, Moreno R, Chubykalo-Fesenko O, Wu J and Xu Y 2021 Phys. Rev. B 104 054420
[32] Morshed M G, Vakili H and Ghosh A W 2022 Phys. Rev. Appl. 17 064019
[33] Shen L, Xia J, Zhao G, Zhang X, Ezawa M, Tretiakov O A, Liu X and Zhou Y 2019 Appl. Phys. Lett. 114 042402
[34] Luo J, Guo J H, Hou Y H, Wang J L, Xu Y B, Zhou Y, Pong P W T and Zhao G P 2023 Chin. Phys. Lett. 40 097501
[35] Thiele A 1973 Phys. Rev. Lett. 30 230
[1] Mapping the antiparallel aligned domain rotation by microwave excitation
Jing Zhang(张景), Yuanzhi Cui(崔远志), Xiaoyu Wang(王晓雨), Chuang Wang(王创), Mengchen Liu(刘梦晨), Jie Xu(徐洁), Kai Li(李凯), Yunhe Zhao(赵芸鹤), Zhenyan Lu(陆振烟), Lining Pan(潘丽宁), Chendong Jin(金晨东), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Derang Cao(曹德让). Chin. Phys. B, 2024, 33(9): 097506.
[2] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[3] Consistency between domain wall oscillation modes and spin wave modes in nanostrips
Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江). Chin. Phys. B, 2024, 33(6): 067502.
[4] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[5] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[6] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[7] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[8] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[9] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[10] Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers
Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺). Chin. Phys. B, 2023, 32(12): 127504.
[11] In-plane spin excitation of skyrmion bags
Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(刘照华), Qi-Yuan Zhu(朱起源), Chen-Bo Zhao(赵晨博), Hu Zhang(张虎), Xing-Qiang Shi(石兴强), Jiang-Long Wang(王江龙), Rui-Ning Wang(王瑞宁), Ru-Qian Lian(连如乾), Peng-Lai Gong(巩朋来), and Chen-Dong Jin(金晨东). Chin. Phys. B, 2023, 32(11): 117503.
[12] Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets
Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强). Chin. Phys. B, 2023, 32(10): 107503.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[15] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
No Suggested Reading articles found!