CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel |
Jie-Yao Chen(陈杰尧)1,2,†, Jia Luo(罗佳)3,†, Geng-Xin Hu(胡更新)4, Jun-Lin Wang(王君林)1,2,‡, Guan-Qi Li(李冠祺)1,2, Zhen-Dong Chen(陈振东)1,2, Xian-Yang Lu(陆显扬)4, Guo-Ping Zhao(赵国平)3,§, Yuan Liu(刘远)1, Jing Wu(吴竞)1,2, and Yong-Bing Xu(徐永兵)1,2,¶ |
1 School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; 2 School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; 3 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China; 4 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.
|
Received: 25 December 2023
Revised: 06 March 2024
Accepted manuscript online: 18 March 2024
|
PACS:
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
12.39.Dc
|
(Skyrmions)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2021B0101300003), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2022A1515110863 and 2023A1515010837), the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 12304136, 61427812, 11774160, 12241403, 51771127, 52171188, and 52111530143), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20192006 and BK20200307), the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380113), International Exchanges 2020 Cost Share (NSFC), China (Grant No. IEC\NSFC\201296), and the Project for Maiden Voyage of Guangzhou Basic and Applied Basic Research Scheme, China (Grant No. 2024A04J4186). |
Corresponding Authors:
Jun-Lin Wang, Guo-Ping Zhao, Yong-Bing Xu
E-mail: junlin.wang@gdut.edu.cn;zhaogp@uestc.edu.cn;yongbing.xu@york.ac.uk
|
Cite this article:
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵) Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel 2024 Chin. Phys. B 33 077505
|
[1] Parkin S S, Hayashi M and Thomas L 2008 Science 320 190 [2] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643 [3] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152 [4] Hrabec A, Sampaio J, Belmeguenai M, Gross I, Weil R, Chérif S. M, Stashkevich A, Jacques V, Thiaville A and Rohart S 2013 Nat. Nanotechnol. 8 742 [5] Roessler U. K, Bogdanov A and Pfleiderer C 2006 Nature 442 797 [6] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [7] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203 [8] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M. B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283 [9] Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C and Xue D 2015 New J. Phys. 17 023061 [10] Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 31LT01 [11] Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261 [12] Liu Y, Yin G, Zang J, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411 [13] Zhang X, Ezawa M, Xiao D, Zhao G, Liu Y and Zhou Y 2015 Nanotechnology 26 225701 [14] Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G and Givord D 2017 Nano Lett. 17 3006 [15] Zhang S, Zhang J, Wen Y, Chudnovsky E M and Zhang X 2018 Appl. Phys. Lett. 113 192403 [16] Wang Z, Guo M, Zhou H A, Zhao L, Xu T, Tomasello R, Bai H, Dong Y, Je S G, Chao W, Han H S, Lee S, Lee K S, Yao Y, Han W, Song C, Wu H, Carpentieri M, Finocchio G, Im M Y, Lin S Z and Jiang W 2020 Nat. Electron. 3 672 [17] Song L, Yang H, Liu B, Meng H, Cao Y and Yan P 2021 J. Magn. Magn. Mater. 532 167975 [18] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J 2020 Nat. Commun. 11 3577 [19] Hou Z, Wang Y, Lan X, Li S, Wan X, Meng F, Hu Y, Fan Z, Feng C, Qin M, Zeng M, Zhang X, Liu X, Fu X, Yu G, Zhou G, Zhou Y, Zhao W, Gao X and Liu J M 2021 Adv. Mater. 34 e2107908 [20] Zhang H, Zhang Y, Hou Z, Qin M, Gao X and Liu J 2023 Materials Futures 2 032201 [21] Guang Y, Zhang L, Zhang J, et al. 2023 Adv. Electron. Mater. 9 2200570 [22] Yang S, Son J W, Ju T S, et al. 2023 Adv. Mater. 35 2208881 [23] Zázvorka J, Jakobs F, Heinze D, et al. 2019 Nat. Nanotechnol. 14 658 [24] Yao Y, Chen X, Kang W, et al. 2020 IEEE Trans. Electron Dev. 67 2553 [25] Yan Z R, Liu Y Z, Guang Y, Yue K, Feng J F, Lake R K, Yu G Q and Han X F 2021 Phys. Rev. Appl. 15 064004 [26] Wang J, Xia J, Zhang X, Zhao G. P, Ye L, Wu J, Xu Y, Zhao W, Zou Z and Zhou Y 2018 J. Phys. D: Appl. Phys. 51 205002 [27] Hu G, Luo J, Wang J, Lu X, Zhao G, Liu Y, Wu J and Xu Y 2023 J. Phys. D: Appl. Phys. 56 085001 [28] Wang J, Xia J, Zhang X, et al. 2020 Appl. Phys. Lett. 117 202401 [29] Tomasello R, Guslienko K Y, Ricci M, et al. 2018 Phys. Rev. B 97 060402 [30] Zhao L, Wang Z, Zhang X, et al. 2020 Phys. Rev. Lett. 125 027206 [31] Wang J, Strungaru M, Ruta S, Meo A, Zhou Y, Deák A, Szunyogh L, Gavriloaea P I, Moreno R, Chubykalo-Fesenko O, Wu J and Xu Y 2021 Phys. Rev. B 104 054420 [32] Morshed M G, Vakili H and Ghosh A W 2022 Phys. Rev. Appl. 17 064019 [33] Shen L, Xia J, Zhao G, Zhang X, Ezawa M, Tretiakov O A, Liu X and Zhou Y 2019 Appl. Phys. Lett. 114 042402 [34] Luo J, Guo J H, Hou Y H, Wang J L, Xu Y B, Zhou Y, Pong P W T and Zhao G P 2023 Chin. Phys. Lett. 40 097501 [35] Thiele A 1973 Phys. Rev. Lett. 30 230 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|