CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
RKKY interaction in helical higher-order topological insulators |
Sha Jin(金莎)1, Jian Li(李健)1,2,3, Qing-Xu Li(李清旭)1,2,3, and Jia-Ji Zhu(朱家骥)1,2,3,† |
1 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 3 Southwest Center for Theoretical Physics, Chongqing University, Chongqing 401331, China |
|
|
Abstract We theoretically investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in helical higher-order topological insulators (HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM) terms, exhibiting a decay with impurity spacing $z$ and oscillations with Fermi energy $\varepsilon_{\scriptscriptstyle{\rm F}}$. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.
|
Received: 27 February 2024
Revised: 13 April 2024
Accepted manuscript online: 16 April 2024
|
PACS:
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
85.75.d
|
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: This work was supported by the research foundation of Institute for Advanced Sciences of CQUPT (Grant No. E011A2022328). |
Corresponding Authors:
Jia-Ji Zhu
E-mail: zhujj@cqupt.edu.cn;
|
Cite this article:
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥) RKKY interaction in helical higher-order topological insulators 2024 Chin. Phys. B 33 077503
|
[1] Kim M, Jacob Z and Rho J 2020 Light Sci. Appl. 9 130 [2] Xie B, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M and Chen Y 2021 Nat. Rev. Phys. 3 520 [3] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61 [4] Liu F and Wakabayashi K 2017 Phys. Rev. Lett. 118 076803 [5] Lin Z K, Wu S Q, Wang H X and Jiang J H 2020 Chin. Phys. Lett. 37 074302 [6] Chen H, Liu Z R, Chen R and Zhou B 2024 Chin. Phys. B 33 01720 [7] Ni X, Li M, Weiner M, Alu A and Khanikaev A B 2020 Nat. Commun. 11 2108 [8] Liu S, Ma S, Zhang Q, Zhang L, Yang C, You O, Gao W, Xiang Y, Cui T J and Zhang S 2020 Light Sci. Appl. 9 145 [9] Hackenbroich A, Hudomal A, Schuch N, Bernevig B A and Regnault N 2021 Phys. Rev. B 103 L161110 [10] Wang J H, Yang Y B, Dai N and Xu Y 2021 Phys. Rev. Lett. 126 206404 [11] Fu B, Hu Z A and Shen S Q 2021 Phys. Rev. Res. 3 033177 [12] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346 [13] Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982 [14] Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Takahashi T, Segawa K and Ando Y 2012 Nat. Phys. 8 800 [15] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115 [16] Sessi P, Sante D D, Szczerbakow A, Glott F, Wilfert S, Schmidt H, Bathon T, Dziawa P, Greiter M, Neupert T, Sangiovanni G, Story T, Thomale R and Bode M 2016 Science 354 1269 [17] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 [18] Fang C and Fu L 2019 Sci. Adv. 5 eaat2374 [19] Kohda M, Okayasu T and Nitta J 2019 Sci. Rep. 9 1909 [20] Yang Z Q, Shao Z K, Chen H Z, Mao X R and Ma R M 2020 Phys. Rev. Lett. 125 013903 [21] Aggarwal L, Zhu P, Hughes T L and Madhavan V 2021 Nat. Commun. 12 4420 [22] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéon S, Yazdani A, Bernevig B A and Neupert T 2018 Nat. Phys. 14 918 [23] Hsu C H, Zhou X, Ma Q, Gedik N, Bansil A, Pereira V M, Lin H, Fu L, Xu S Y and Chang T R 2019 2D Mater. 6 031004 [24] Shumiya N, Hossain M S, Yin J X, et al. 2022 Nat. Mater. 21 1111 [25] Wang Z, Wieder B J, Li J, Yan B and Bernevig B A 2019 Phys. Rev. Lett. 123 186401 [26] Noguchi R, Kobayashi M, Jiang Z, et al. 2021 Nat. Mater. 20 473 [27] Laubscher K, Keizer P and Klinovaja J 2023 Phys. Rev. B 107 045409 [28] Yang Z Z, Li X, Peng Y Y, Zou X Y and Cheng J C 2020 Phys. Rev. Lett. 125 255502 [29] Craig N, Taylor J, Lester E, Marcus C, Hanson M and Gossard A 2004 Science 304 565 [30] Usaj G, Lustemberg P and Balseiro C A 2005 Phys. Rev. Lett. 94 036803 [31] Dugaev V K, Litvinov V I and Barnas J 2006 Phys. Rev. B 74 224438 [32] Brey L, Fertig H A and Das Sarma S 2007 Phys. Rev. Lett. 99 116802 [33] Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603 [34] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201 [35] Chang H R, Zhou J, Wang S X, Shan W Y and Xiao D 2015 Phys. Rev. B 92 241103 [36] Hosseini M V and Askari M 2015 Phys. Rev. B 92 224435 [37] Yarmohammadi M and Cheraghchi H 2020 Phys. Rev. B 102 075411 [38] Cheraghchi H and Yarmohammadi M 2021 Sci. Rep. 11 5273 [39] Yarmohammadi M, Bukov M and Kolodrubetz M H 2023 Phys. Rev. B 107 054439 [40] Hickel T and Nolting W 2004 Phys. Rev. B 69 085110 [41] Nolting W, Reddy G G, Ramakanth A and Meyer D 2001 Phys. Rev. B 64 155109 [42] Schindler F, Tsirkin S S, Neupert T, Bernevig B A and Wieder B J 2022 Nat. Commun. 13 5791 [43] Laubscher K, Miserev D, Kaladzhyan V, Loss D and Klinovaja J 2023 Phys. Rev. B 107 115421 [44] Schmidt T M, Miwa R H and Fazzio A 2011 Phys. Rev. B 84 245418 [45] Henk J, Ernst A, Eremeev S V, Chulkov E V, Maznichenko I V and Mertig I 2012 Phys. Rev. Lett. 108 206801 [46] Zhang J M, Zhu W, Zhang Y, Xiao D and Yao Y 2012 Phys. Rev. Lett. 109 266405 [47] Sun J, Chen L and Lin H Q 2014 Phys. Rev. B 89 115101 [48] Duan H J, Wu Y J, Yang Y Y, Zheng S H, Zhu C Y, Deng M X, Yang M and Wang R Q 2022 New J. Phys. 24 033029 [49] Mohammadi R G and Moghaddam A G 2020 Phys. Rev. B 101 075421 [50] Mross D F and Johannesson H 2009 Phys. Rev. B 80 155302 [51] Duan H J, Wang C, Zheng S H, Wang R Q, Pan D R and Yang M 2018 Sci. Rep. 8 6185 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|