Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077503    DOI: 10.1088/1674-1056/ad3ef9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

RKKY interaction in helical higher-order topological insulators

Sha Jin(金莎)1, Jian Li(李健)1,2,3, Qing-Xu Li(李清旭)1,2,3, and Jia-Ji Zhu(朱家骥)1,2,3,†
1 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
3 Southwest Center for Theoretical Physics, Chongqing University, Chongqing 401331, China
Abstract  We theoretically investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in helical higher-order topological insulators (HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM) terms, exhibiting a decay with impurity spacing $z$ and oscillations with Fermi energy $\varepsilon_{\scriptscriptstyle{\rm F}}$. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.
Keywords:  magnetic impurity interactions      magnetic ordering      spintronics      topological phases  
Received:  27 February 2024      Revised:  13 April 2024      Accepted manuscript online:  16 April 2024
PACS:  75.30.Hx (Magnetic impurity interactions)  
  75.10.b  
  85.75.d  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: This work was supported by the research foundation of Institute for Advanced Sciences of CQUPT (Grant No. E011A2022328).
Corresponding Authors:  Jia-Ji Zhu     E-mail:  zhujj@cqupt.edu.cn

Cite this article: 

Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥) RKKY interaction in helical higher-order topological insulators 2024 Chin. Phys. B 33 077503

[1] Kim M, Jacob Z and Rho J 2020 Light Sci. Appl. 9 130
[2] Xie B, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M and Chen Y 2021 Nat. Rev. Phys. 3 520
[3] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61
[4] Liu F and Wakabayashi K 2017 Phys. Rev. Lett. 118 076803
[5] Lin Z K, Wu S Q, Wang H X and Jiang J H 2020 Chin. Phys. Lett. 37 074302
[6] Chen H, Liu Z R, Chen R and Zhou B 2024 Chin. Phys. B 33 01720
[7] Ni X, Li M, Weiner M, Alù A and Khanikaev A B 2020 Nat. Commun. 11 2108
[8] Liu S, Ma S, Zhang Q, Zhang L, Yang C, You O, Gao W, Xiang Y, Cui T J and Zhang S 2020 Light Sci. Appl. 9 145
[9] Hackenbroich A, Hudomal A, Schuch N, Bernevig B A and Regnault N 2021 Phys. Rev. B 103 L161110
[10] Wang J H, Yang Y B, Dai N and Xu Y 2021 Phys. Rev. Lett. 126 206404
[11] Fu B, Hu Z A and Shen S Q 2021 Phys. Rev. Res. 3 033177
[12] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[13] Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982
[14] Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Takahashi T, Segawa K and Ando Y 2012 Nat. Phys. 8 800
[15] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[16] Sessi P, Sante D D, Szczerbakow A, Glott F, Wilfert S, Schmidt H, Bathon T, Dziawa P, Greiter M, Neupert T, Sangiovanni G, Story T, Thomale R and Bode M 2016 Science 354 1269
[17] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[18] Fang C and Fu L 2019 Sci. Adv. 5 eaat2374
[19] Kohda M, Okayasu T and Nitta J 2019 Sci. Rep. 9 1909
[20] Yang Z Q, Shao Z K, Chen H Z, Mao X R and Ma R M 2020 Phys. Rev. Lett. 125 013903
[21] Aggarwal L, Zhu P, Hughes T L and Madhavan V 2021 Nat. Commun. 12 4420
[22] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéon S, Yazdani A, Bernevig B A and Neupert T 2018 Nat. Phys. 14 918
[23] Hsu C H, Zhou X, Ma Q, Gedik N, Bansil A, Pereira V M, Lin H, Fu L, Xu S Y and Chang T R 2019 2D Mater. 6 031004
[24] Shumiya N, Hossain M S, Yin J X, et al. 2022 Nat. Mater. 21 1111
[25] Wang Z, Wieder B J, Li J, Yan B and Bernevig B A 2019 Phys. Rev. Lett. 123 186401
[26] Noguchi R, Kobayashi M, Jiang Z, et al. 2021 Nat. Mater. 20 473
[27] Laubscher K, Keizer P and Klinovaja J 2023 Phys. Rev. B 107 045409
[28] Yang Z Z, Li X, Peng Y Y, Zou X Y and Cheng J C 2020 Phys. Rev. Lett. 125 255502
[29] Craig N, Taylor J, Lester E, Marcus C, Hanson M and Gossard A 2004 Science 304 565
[30] Usaj G, Lustemberg P and Balseiro C A 2005 Phys. Rev. Lett. 94 036803
[31] Dugaev V K, Litvinov V I and Barnas J 2006 Phys. Rev. B 74 224438
[32] Brey L, Fertig H A and Das Sarma S 2007 Phys. Rev. Lett. 99 116802
[33] Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603
[34] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201
[35] Chang H R, Zhou J, Wang S X, Shan W Y and Xiao D 2015 Phys. Rev. B 92 241103
[36] Hosseini M V and Askari M 2015 Phys. Rev. B 92 224435
[37] Yarmohammadi M and Cheraghchi H 2020 Phys. Rev. B 102 075411
[38] Cheraghchi H and Yarmohammadi M 2021 Sci. Rep. 11 5273
[39] Yarmohammadi M, Bukov M and Kolodrubetz M H 2023 Phys. Rev. B 107 054439
[40] Hickel T and Nolting W 2004 Phys. Rev. B 69 085110
[41] Nolting W, Reddy G G, Ramakanth A and Meyer D 2001 Phys. Rev. B 64 155109
[42] Schindler F, Tsirkin S S, Neupert T, Bernevig B A and Wieder B J 2022 Nat. Commun. 13 5791
[43] Laubscher K, Miserev D, Kaladzhyan V, Loss D and Klinovaja J 2023 Phys. Rev. B 107 115421
[44] Schmidt T M, Miwa R H and Fazzio A 2011 Phys. Rev. B 84 245418
[45] Henk J, Ernst A, Eremeev S V, Chulkov E V, Maznichenko I V and Mertig I 2012 Phys. Rev. Lett. 108 206801
[46] Zhang J M, Zhu W, Zhang Y, Xiao D and Yao Y 2012 Phys. Rev. Lett. 109 266405
[47] Sun J, Chen L and Lin H Q 2014 Phys. Rev. B 89 115101
[48] Duan H J, Wu Y J, Yang Y Y, Zheng S H, Zhu C Y, Deng M X, Yang M and Wang R Q 2022 New J. Phys. 24 033029
[49] Mohammadi R G and Moghaddam A G 2020 Phys. Rev. B 101 075421
[50] Mross D F and Johannesson H 2009 Phys. Rev. B 80 155302
[51] Duan H J, Wang C, Zheng S H, Wang R Q, Pan D R and Yang M 2018 Sci. Rep. 8 6185
[1] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[2] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[3] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[4] Magnetic ordering induced magnetodielectric effect in Ho2Cu2O5 and Yb2Cu2O5
Hao Jin(金昊), Shuai Huang(黄帅), Kai-Qi Wan(万凯奇), Chang-Ming Zhu(朱长明),Hai-Ou Wang(王海欧), Kun-Peng Su(苏昆朋), and De-Xuan Huo(霍德璇). Chin. Phys. B, 2023, 32(6): 067504.
[5] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[6] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[7] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[8] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[9] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[10] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[11] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[12] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[13] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
No Suggested Reading articles found!