|
|
Coulomb-assisted nonlocal electron transport between two pairs of Majorana bound states in a superconducting island |
Hao-Di Wang(王浩迪), Jun-Tong Ren(任俊潼), Hai-Feng Lü(吕海峰)†, and Sha-Sha Ke(柯莎莎)‡ |
School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires, where both nanowires are in proximity to a mesoscopic superconducting (SC) island. Each Majorana bound state (MBS) is coupled to one lead via a quantum dot with resonant levels. In this device, the nonlocal correlations can be induced in the absence of Majorana energy splitting. We find that the negative differential conductance and giant current noise cross correlation could be induced, due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect. This feature may provide a signature for the existence of the MBSs.
|
Received: 26 September 2023
Revised: 24 January 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
74.78.Na
|
(Mesoscopic and nanoscale systems)
|
|
73.21.La
|
(Quantum dots)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074209 and 12274063), the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J100), and the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202008) |
Corresponding Authors:
Hai-Feng Lu, Sha-Sha Ke
E-mail: lvhf04@uestc.edu.cn;keshasha@uestc.edu.cn
|
Cite this article:
Hao-Di Wang(王浩迪), Jun-Tong Ren(任俊潼), Hai-Feng Lü(吕海峰), and Sha-Sha Ke(柯莎莎) Coulomb-assisted nonlocal electron transport between two pairs of Majorana bound states in a superconducting island 2024 Chin. Phys. B 33 050310
|
[1] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113 [2] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [3] Stern A 2010 Nature 464 187 [4] Fu L 2010 Phys. Rev. Lett. 104 056402 [5] Flensberg K 2011 Phys. Rev. Lett. 106 090503 [6] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104 [7] Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575 [8] Flensberg K, von Oppen F and Stern A 2021 Nat. Rev. Mater. 6 944 [9] Ren H, Pientka F, Hart S, et al. 2019 Nature 569 93 [10] Fornieri A, Whiticar A M, et al. 2019 Nature 569 89 [11] Vaitiekenas S, Liu Y, Krogstrup P and Marcus C M 2021 Nat. Phys. 17 43 [12] Crawford D, Mascot E, Shimizu M, Beck P, Wiebe J, Wiesendanger R, Jeschke H O, Morr D K and Rachel S 2022 npj Quantum Mater. 7 117 [13] Chen J, Xu W, Tan Z, Pan Z, Zhu P, Liao Z M and Yu D 2022 Nano Lett. 22 6484 [14] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z and Gao H J 2022 Nature 606 890 [15] Sau J D and Brydon P M R 2015 Phys. Rev. Lett. 115 127003 [16] Moore C, Zeng C, Stanescu T D and Tewari S 2018 Phys. Rev. B 98 155314 [17] Woods B D, Das Sarma S and Stanescu T D 2021 Phys. Rev. Appl. 16 054053 [18] Ahn S, Pan H, Woods B, Stanescu T D and Das Sarma S 2021 Phys. Rev. Mater. 5 124602 [19] Pan H, Liu C-X, Wimmer M and Das Sarma S 2021 Phys. Rev. B 103 214502 [20] Frolov S 2021 Nature 592 350 [21] Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, and Katsaros G 2021 Science 373 82 [22] Hess R, Legg H F, Loss D and Klinovaja J 2021 Phys. Rev. B 104 075405 [23] Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V and Frolov S M 2021 Nat. Phys. 17 482 [24] Das Sarma S and Pan H 2021 Phys. Rev. B 103 195158 [25] Pan H and Das Sarma S 2022 Phys. Rev. B 105 115432 [26] Hofstetter L, Csonka S, Nygård J and Schrödinger C 2009 Nature 461 960 [27] Hofstetter L, Csonka S, Baumgartner A,, et al. 2011 Phys. Rev. Lett. 107 136801 [28] Wei J and Chandrasekhar V 2012 Nat. Phys. 6 494 [29] Min J H, Lee K, Chung T H, et al. 2022 Opto-Electron. Sci. 1 220016 [30] Das A, Ronen Y, Heiblum M, Mahalu D, Kretinin A V and Shtrikman H 2012 Nat. Commun. 3 1165 [31] Huang H J, Balcytis A, Dubey A, et al. 2023 Opto-Electron. Sci. 2 220022 [32] Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002 [33] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403 [34] Tewari S, Zhang C, Das Sarma S, Nayak C and Lee D H 2008 Phys. Rev. Lett. 100 027001 [35] Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001 [36] Lü H F, Lu H Z and Shen S Q 2012 Phys. Rev. B 86 075318 [37] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802 [38] Liu J, Zhang F C and Law K T 2013 Phys. Rev. B 88 064509 [39] Porfirev A, Khonina S, Ustinov A, Ivliev N and Golub I 2023 OptoElectron. Sci. 2 230014 [40] Das Sarma S, Sau J D and Stanescu T D 2012 Phys. Rev. B 86 220506 [41] Chen J Y, Eul T, Lyu L, et al. 2022 Opto-Electron. Sci. 1 210011 [42] Yan S Q, Zuo Y, Xiao S S, Oxenlowe L K and Ding Y H 2022 OptoElectron. Adv. 5 210159 [43] McClure D T, DiCarlo L, Zhang Y, et al. 2007 Phys. Rev. Lett. 98 056801 [44] Zhang Y, DiCarlo L, McClure D T, Yamamoto M, Tarucha S, Marcus C M, Hanson M P and Gossard A C 2007 Phys. Rev. Lett. 99 036603 [45] Liu S Q, Chen S Z, Wen S C and Luo H L 2022 Opto-Electron. Sci. 1 220007 [46] Hützen R, Zazunov A, Braunecker B, Yeyati A L and Egger R 2012 Phys. Rev. Lett. 109 166403 [47] Sillanpaää M A, Lehtinen T, Paila A, Makhlin Yu, Roschier L and Hako- nen P J 2005 Phys. Rev. Lett. 95 206806 [48] Naaman O and Aumentado J 2007 Phys. Rev. Lett. 98 227001 [49] Bruus H and Flensberg K 2004 Many-Body Quantum Theory in Condensed Matter Physics (Oxford: Oxford University Press) [50] Kashcheyevs V, Aharony A and Entin-Wohlman O 2006 Phys. Rev. B 73 125338 [51] Mitra A and Millis A J 2007 Phys. Rev. B 76 085342 [52] Timm C 2008 Phys. Rev. B 77 195416 [53] Pöltl C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313 [54] Lu H Z, Zhou B and Shen S Q 2009 Phys. Rev. B 79 174419 [55] Lü H F, Lu H Z and Shen S Q 2014 Phys. Rev. B 90 195404 [56] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308 [57] Yan D D, Zhao S Y, Zhang Y B, Wang H X and Zang Z G 2022 OptoElectron. Adv. 5 200075 [58] Yang X, Lin Y, Wu T Z, et al. 2022 Opto-Electron. Adv. 5 210123 [59] Thielmann A, Hettler M H, Konig J and Schön G 2005 Phys. Rev. B 71 045341 [60] He X, Liu D L, Wang H F, et al. 2022 Opto-Electron. Adv. 5 210015 [61] Aghassi J, Thielmann A, Hettler M H and Schön G 2006 Phys. Rev. B 73 195323 [62] Chen J F and Li Z Y 2022 Opto-Electron. Sci. 1 220001 [63] Elste F and Timm C 2006 Phys. Rev. B 73 235305 [64] Weymann I, Bułka B R and Barnals J 2011 Phys. Rev. B 83 195302 [65] Koch J and von Oppen F 2005 Phys. Rev. Lett. 94 206804 [66] Hübener H and Brandes T 2007 Phys. Rev. Lett. 99 247206 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|