Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074210    DOI: 10.1088/1674-1056/ad432a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices

Zhijiang Ye(叶之江)1, Zuanming Jin(金钻明)1,2,†, Yexin Jiang(蒋叶昕)1, Qi Lu(卢琦)3, Menghui Jia(贾梦辉)5, Dong Qian(钱冬)3,4, Xiamin Huang(黄夏敏)6,7, Zhou Li(李舟)6,7,8, Yan Peng(彭滟)1,2, and Yiming Zhu(朱亦鸣)1,2
1 Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China;
3 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
5 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
6 GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China;
7 Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China;
8 University of Chinese Academy of Sciences, Beijing 100039, China
Abstract  Chalcogenide superlattices Sb$_{2}$Te$_{3}$-GeTe is a candidate for interfacial phase-change memory (iPCM) data storage devices. By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together, we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb$_{2}$Te$_{3}$-GeTe superlattices. Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric, shift and injection currents contribute to the THz generation in Sb$_{2}$Te$_{3}$-GeTe superlattices. By decreasing the thickness and increasing the number of GeTe and Sb$_{2}$Te$_{3}$ layer, the interlayer coupling can be enhanced, which significantly reduces the contribution from circular photo-galvanic effect (CPGE). A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of $\sim 1100 $nm to $\sim 1400 $nm further demonstrates a gapped state resulting from the interlayer coupling. These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
Keywords:  Sb$_{2}$Te$_{3}$/GeTe superlattices      ultrafast carrier dynamics      interfacial phase change memory      THz emission spectroscopy      transient reflectance spectroscopy  
Received:  18 April 2024      Revised:  18 April 2024      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  73.21.Cd (Superlattices)  
  78.47.+p  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFF0719200 and 2022YFA1404004),the National Natural Science Foundation of China (Grant Nos.62322115,61988102,61975110,62335012,and 12074248),111 Project (Grant No.D18014),the Key Project supported by Science and Technology Commission Shanghai Municipality (Grant No.YDZX20193100004960),Science and Technology Commission of Shanghai Municipality (Grant Nos.22JC1400200 and 21S31907400),and General Administration of Customs People’s Republic of China (Grant No.2019HK006).
Corresponding Authors:  Zuanming Jin     E-mail:  physics_jzm@usst.edu.cn

Cite this article: 

Zhijiang Ye(叶之江), Zuanming Jin(金钻明), Yexin Jiang(蒋叶昕), Qi Lu(卢琦), Menghui Jia(贾梦辉), Dong Qian(钱冬), Xiamin Huang(黄夏敏), Zhou Li(李舟), Yan Peng(彭滟), and Yiming Zhu(朱亦鸣) Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices 2024 Chin. Phys. B 33 074210

[1] Simpson R E, Fons P, Kolobov A V, Fukaya T, Krbal M, Yagi T and Tominaga J 2011 Nat. Nanotechnol. 6 501
[2] Okabe K L, Sood A, Yalon E, Neumann C M, Asheghi M, Pop E, Goodson K E and Wong H S P 2019 J. Appl. Phys. 125 184501
[3] Tominaga J, Simpson R E, Fons P and Kolobov A V 2011 Appl. Phys. Lett. 99 152105
[4] Egami T, Johguchi K, Yamazaki S and Takeuchi K 2014 Jpn. J. Appl. Phys. 53 04ED02
[5] Ohyanagi T and Takaura N 2016 AIP Advances 6 105104
[6] Sa B, Zhou J, Sun Z, Tominaga J and Ahuja R 2012 Phys. Rev. Lett. 109 096802
[7] Zhu S, Ishida Y, Kuroda K, Sumida K, Ye M, Wang J, Pan H, Taniguchi M, Qiao S, Shin S and Kimura A 2015 Scientific Reports 5 13213
[8] Tominaga J, Kolobov A V, Fons P, Nakano T and Murakami S 2014 Advanced Materials Interfaces 1 1300027
[9] Di Sante D, Barone P, Bertacco R and Picozzi S 2013 Adv. Mater. 25 509
[10] Ohyanagi T, Kitamura M, Araidai M, Kato S, Takaura N and Shiraishi K 2014 Appl. Phys. Lett. 104 252106
[11] Kolobov A V, Fons P, Saito Y and Tominaga J 2017 ACS Omega 2 6223
[12] Momand J, Wang R, Boschker J E, Verheijen M A, Calarco R and Kooi B J 2015 Nanoscale 7 19136
[13] Kim J, Kim J, Kim K-S and Jhi S-H 2012 Phys. Rev. Lett. 109 146601
[14] Saito Y, Makino K, Fons P, Kolobov A V and Tominaga J 2017 ACS Applied Materials & Interfaces 9 23918
[15] Tominaga J, Kolobov A V, Fons P J, Wang X, Saito Y, Nakano T, Hase M, Murakami S, Herfort J and Takagaki Y 2015 Science and Technology of Advanced Materials 16 014402
[16] Kellner J, Bihlmayer G, Liebmann M, Otto S, Pauly C, Boschker J E, Bragaglia V, Cecchi S, Wang R N, Deringer V L, Küppers P, Bhaskar P, Golias E, Sánchez-Barriga J, Dronskowski R, Fauster T, Rader O, Calarco R and Morgenstern M 2018 Communications Physics 1 5
[17] Bang D, Awano H, Tominaga J, Kolobov A V, Fons P, Saito Y, Makino K, Nakano T, Hase M, Takagaki Y, Giussani A, Calarco R and Murakami S 2014 Scientific Reports 4 5727
[18] Mondal R, Aihara Y, Saito Y, Fons P, Kolobov A V, Tominaga J and Hase M 2018 ACS Applied Materials & Interfaces 10 26781
[19] Suzuki T, Mondal R, Saito Y, Fons P, Kolobov A V, Tominaga J, Shigekawa H and Hase M 2019 J. Phys.: Condens. Matter 31 415502
[20] Kwon H, Khan A I, Perez C, Asheghi M, Pop E and Goodson K E 2021 Nano Lett. 21 5984
[21] Makino K, Saito Y, Fons P, Kolobov A V, Nakano T, Tominaga J and Hase M 2016 Scientific Reports 6 19758
[22] Shu M J, Zalden P, Chen F, Weems B, Chatzakis I, Xiong F, Jeyasingh R, Hoffmann M C, Pop E, Philip Wong H S, Wuttig M and Lindenberg A M 2014 Appl. Phys. Lett. 104 251907
[23] Makino K, Kuromiya S, Takano K, Kato K, Nakajima M, Saito Y, Tominaga J, Iida H, Kinoshita M and Nakano T 2016 ACS Applied Materials & Interfaces 8 32408
[24] Makino K, Kato K, Saito Y, Fons P, Kolobov A V, Tominaga J, Nakano T and Nakajima M 2019 Opt. Lett. 44 1355
[25] Zhu Y, Zang X, Chi H, Zhou Y, Zhu Y and Zhuang S 2023 Light: Advanced Manufacturing 4 9
[26] Lyu J, Shen S, Chen L, Zhu Y and Zhuang S 2023 PhotoniX 4 28
[27] Peng Y, Huang J, Luo J, Yang Z, Wang L, Wu X, Zang X, Yu C, Gu M, Hu Q, Zhang X, Zhu Y and Zhuang S 2021 PhotoniX 2 12
[28] Peng Q, Peng Z, Lang Y, Zhu Y, Zhang D, Lü Z and Zhao Z 2022 Chin. Phys. Lett. 39 053301
[29] Jia G R, Zhao D X, Zhang S S, Yue Z W, Qin C C, Jiao Z Y and Bian X B 2023 Chin. Phys. Lett. 40 103202
[30] Wu X 2023 Chin. Phys. Lett. 40 054001
[31] Pettine J, Padmanabhan P, Sirica N, Prasankumar R P, Taylor A J and Chen H T 2023 Light: Science & Applications 12 133
[32] Jin Z, Peng Y, Ni Y, Wu G, Ji B, Wu X, Zhang Z, Ma G, Zhang C, Chen L, Balakin A V, Shkurinov A P, Zhu Y and Zhuang S 2022 Laser & Photonics Reviews 16 2100688
[33] Jin Z, Guo Y, Peng Y, Zhang Z, Pang J, Zhang Z, Liu F, Ye B, Jiang Y, Ma G, Zhang C, Balakin A V, Shkurinov A P, Zhu Y and Zhuang S 2023 Advanced Physics Research 2 2200049
[34] Lan Z, Li Z, Xu H, Liu F, Jin Z, Peng Y and Zhu Y 2024 Chin. Phys. Lett. 41 044203
[35] Glinka Y D, Li J, He T and Sun X W 2021 ACS Photonics 8 1191
[36] Sharma P, Bhardwaj A, Sharma R, Awana V P S, Narayanan T N, Raman K V and Kumar M 2022 The Journal of Physical Chemistry C 126 11138
[37] Yang S, Cheng L and Qi J 2023 Ultrafast Science 3 0047
[38] Tong M, Hu Y, He W, Yu X L, Hu S, Cheng X and Jiang T 2021 ACS Nano 15 17565
[39] Gao Y, Pei Y, Xiang T, Cheng L and Qi J 2022 iScience 25 104511
[40] Grimme S 2006 Journal of Computational Chemistry 27 1787
[41] Blochl P E 1994 Phys. Rev. B 50 17953
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[44] Xu X, Huang Y, Zhang Z, Liu J, Lou J, Gao M, Wu S, Fang G, Zhao Z, Chen Y, Sheng Z and Chang C 2023 Chin. Phys. Lett. 40 045201
[45] Boland J L, Damry D A, Xia C Q, Schönherr P, Prabhakaran D, Herz L M, Hesjedal T and Johnston M B 2023 ACS Photonics 10 1473
[46] Seifert P, Vaklinova K, Kern K, Burghard M and Holleitner A 2017 Nano Lett. 17 973
[47] Tong M, Hu Y, Wang Z, Zhou T, Xie X, Cheng X and Jiang T 2021 Nano Lett. 21 60
[48] Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y P, Zhang W L, Su Y L, Chen X, Weng H, Kharzeev D E, Liu M K and Qi J 2020 Nat. Commun. 11 720
[49] Ji Z, Liu G, Addison Z, Liu W, Yu P, Gao H, Liu Z, Rappe A M, Kane C L, Mele E J and Agarwal R 2019 Nat. Mater. 18 955
[50] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nanotechnol. 7 96
[51] Hosur P 2011 Phys. Rev. B 83 035309
[52] Fu C, Sun Y and Felser C 2020 APL Materials 8 040913
[53] Tan L Z, Zheng F, Young S M, Wang F, Liu S and Rappe A M 2016 npj Computational Materials 2 16026
[54] Osterhoudt G B, Diebel L K, Gray M J, Yang X, Stanco J, Huang X, Shen B, Ni N, Moll P J W, Ran Y and Burch K S 2019 Nat. Mater. 18 471
[55] Ruan S, Lin X, Chen H, Song B, Dai Y, Yan X, Jin Z, Ma G and Yao J 2021 Appl. Phys. Lett. 118 011102
[56] Nguyen T A, Backes D, Singh A, Mansell R, Barnes C, Ritchie D A, Mussler G, Lanius M, Grützmacher D and Narayan V 2016 Scientific Reports 6 27716
[57] Nakamura H, Hofmann J, Inoue N, Koelling S, Koenraad P M, Mussler G, Grützmacher D and Narayan V 2020 Scientific Reports 10 21806
[1] A global model of intensity autocorrelation to determine laser pulse duration
Yufei Peng(彭雨菲), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). Chin. Phys. B, 2024, 33(5): 054207.
[2] Optimization of extreme ultraviolet vortex beam based on high harmonic generation
Bo Xiao(肖礴), Yi-Wen Zhao(赵逸文), Fang-Jing Cheng(程方晶), Ge-Wen Wang(王革文), Wei Jiang(姜威), Yi-Chen Wang(王一琛), Jie Hu(胡杰), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054209.
[3] On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(3): 034210.
[4] Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
Hao Kuang(匡皓), Junxiao Yu(余军潇), Jie Chen(陈洁), H. E. Elsayed-Ali, Runze Li(李润泽), and Peter M. Rentzepis. Chin. Phys. B, 2024, 33(3): 037802.
[5] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[6] Using harmonic beam combining to generate pulse-burst in nonlinear optical laser
Yuan-Zhai Xu(许元斋), Zhen-Ling Li(李珍玲), Ao-Nan Zhang(张奥楠), Ke Liu(刘可), Jing-Jing Zhang(张晶晶), Xiao-Jun Wang(王小军), Qin-Jun Peng(彭钦军), and Zu-Yan Xu(许祖彦). Chin. Phys. B, 2024, 33(1): 014206.
[7] Attosecond ionization time delays in strong-field physics
Yongzhe Ma(马永哲), Hongcheng Ni(倪宏程), and Jian Wu(吴健). Chin. Phys. B, 2024, 33(1): 013201.
[8] Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses
Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2024, 33(1): 013303.
[9] Time-dependent variational approach to solve multi-dimensional time-dependent Schrödinger equation
Mingrui He(何明睿), Zhe Wang(王哲), Lufeng Yao(姚陆锋), and Yang Li(李洋). Chin. Phys. B, 2023, 32(12): 124206.
[10] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[11] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[12] Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser
Weijun Ling(令维军), Jingwen Xue(薛婧雯), Jinfang Yang(杨金芳) Chong Wang(王翀), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Mingxia Zhang(张明霞), Feiping Lu(路飞平), Xiangbing Li(李向兵), and Zhong Dong(董忠). Chin. Phys. B, 2023, 32(11): 114211.
[13] Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam
Xu Zhang(张旭), Zhaohua Wang(王兆华), Xianzhi Wang(王羡之), Jiawen Li(李佳文), Jiajun Li(李佳俊), Guodong Zhao(赵国栋), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(10): 104206.
[14] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[15] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
No Suggested Reading articles found!