ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam |
Xu Zhang(张旭)1,2, Zhaohua Wang(王兆华)1,2,3,†, Xianzhi Wang(王羡之)1, Jiawen Li(李佳文)1,2, Jiajun Li(李佳俊)1,2, Guodong Zhao(赵国栋)1,2, and Zhiyi Wei(魏志义)1,2,3,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract A cylindrical vector beam is utilized to enhance the energy scale of the pulse post-compressed in a bulk-material Herriott multi-pass cell (MPC). The method proposed here enables, for the first time to the best of our knowledge, pulse compression from 14 ps down to 475 fs with throughput energy beyond 1 mJ, corresponding to a compression ratio of 30, which is the highest pulse energy and compression ratio in single-stage bulk-material MPCs. Furthermore, we demonstrate the characteristic of the vector polarization beam is preserved in the MPC.
|
Received: 29 April 2023
Revised: 12 May 2023
Accepted manuscript online: 16 May 2023
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
Corresponding Authors:
Zhaohua Wang, Zhiyi Wei
E-mail: zhwang@iphy.ac.cn;zywei@iphy.ac.cn
|
Cite this article:
Xu Zhang(张旭), Zhaohua Wang(王兆华), Xianzhi Wang(王羡之), Jiawen Li(李佳文), Jiajun Li(李佳俊), Guodong Zhao(赵国栋), and Zhiyi Wei(魏志义) Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam 2023 Chin. Phys. B 32 104206
|
[1] Mukhin I B, Volkov M R, Vikulov I A, Perevezentsev E A and Palashov O V 2020 Quantum Electron. 50 321 [2] Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L and Wang C Y 2019 Chin. Opt. Lett. 17 4 [3] Jauregui C, Limpert J and Tünnermann A 2013 Nat. Photon. 7 861 [4] Calendron A L, Cankaya H and Kartner F X 2014 Opt. Express 22 24752 [5] Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K and Nam C H 2017 Opt. Lett. 42 2058 [6] Yoon J W, Kim Y G, Choi I, Sung J H, Lee H W, Lee S K and Nam C H 2021 Optica 8 630 [7] Nagy T, Simon P and Veisz L 2021 Adv. Phys. X 6 1845795 [8] Cao H B, Nagymihaly R S, Khodakovskiy N, Pajer V, Bohus J, Lopez-Martens R, Borzsonyi A and Kalashnikov M 2021 Opt. Express 29 5915 [9] Kim J I, Yoon J W, Yang J M, Kim Y G, Sung J H, Lee S K and Nam C H 2022 Opt. Express 30 26212 [10] Zhu B B, Fu Z Y, Chen Y D, Peng S N, Jin C, Fan G Y, Zhang S, Wang S J, Ru H, Tian C S, Wang Y H, Kapteyn H, Murnane M and Tao Z S 2022 Opt. Express 30 2918 [11] Zhang S, Fu Z Y, Zhu B B, Fan G Y, Chen Y D, Wang S J, Liu Y X, Baltuska A, Jin C, Tian C S and Tao Z S 2021 Light: Sci. Appl. 10 53 [12] Emaury F, Saraceno C J, Debord B, Ghosh D, Diebold A, Gerome F, Sudmeyer T, Benabid F and Keller U 2014 Opt. Lett. 39 6843 [13] Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725 [14] Arnold C L, Zhou B, Akturk S, Chen S, Couairon A and Mysyrowicz A 2010 New J. Phys. 12 073015 [15] Tsai M S, Liang A Y, Tsai C L, Lai P W, Lin M W and Chen M C 2022 Sci. Adv. 8 eabo1945 [16] Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I and Heyl C M 2022 Optica 9 197 [17] Rueda P, Videla F, Witting T, Torchia G A and Furch F J 2021 Opt. Express 29 27004 [18] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y and Nubbemeyer T 2018 Opt. Lett. 43 5877 [19] Song J, Wang Z, Lv R, Wang X, Teng H, Zhu J and Wei Z 2021 Appl. Phys. B 127 50 [20] Kaumanns M, Kormin D, Nubbemeyer T, Pervak V and Karsch S 2020 Opt. Lett. 46 929 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|