Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104206    DOI: 10.1088/1674-1056/acd5c6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam

Xu Zhang(张旭)1,2, Zhaohua Wang(王兆华)1,2,3,†, Xianzhi Wang(王羡之)1, Jiawen Li(李佳文)1,2, Jiajun Li(李佳俊)1,2, Guodong Zhao(赵国栋)1,2, and Zhiyi Wei(魏志义)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  A cylindrical vector beam is utilized to enhance the energy scale of the pulse post-compressed in a bulk-material Herriott multi-pass cell (MPC). The method proposed here enables, for the first time to the best of our knowledge, pulse compression from 14 ps down to 475 fs with throughput energy beyond 1 mJ, corresponding to a compression ratio of 30, which is the highest pulse energy and compression ratio in single-stage bulk-material MPCs. Furthermore, we demonstrate the characteristic of the vector polarization beam is preserved in the MPC.
Keywords:  cylindrical vector beam      post-compression      multi-pass cell  
Received:  29 April 2023      Revised:  12 May 2023      Accepted manuscript online:  16 May 2023
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.60.-v (Laser optical systems: design and operation)  
Corresponding Authors:  Zhaohua Wang, Zhiyi Wei     E-mail:  zhwang@iphy.ac.cn;zywei@iphy.ac.cn

Cite this article: 

Xu Zhang(张旭), Zhaohua Wang(王兆华), Xianzhi Wang(王羡之), Jiawen Li(李佳文), Jiajun Li(李佳俊), Guodong Zhao(赵国栋), and Zhiyi Wei(魏志义) Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam 2023 Chin. Phys. B 32 104206

[1] Mukhin I B, Volkov M R, Vikulov I A, Perevezentsev E A and Palashov O V 2020 Quantum Electron. 50 321
[2] Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L and Wang C Y 2019 Chin. Opt. Lett. 17 4
[3] Jauregui C, Limpert J and Tünnermann A 2013 Nat. Photon. 7 861
[4] Calendron A L, Cankaya H and Kartner F X 2014 Opt. Express 22 24752
[5] Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K and Nam C H 2017 Opt. Lett. 42 2058
[6] Yoon J W, Kim Y G, Choi I, Sung J H, Lee H W, Lee S K and Nam C H 2021 Optica 8 630
[7] Nagy T, Simon P and Veisz L 2021 Adv. Phys. X 6 1845795
[8] Cao H B, Nagymihaly R S, Khodakovskiy N, Pajer V, Bohus J, Lopez-Martens R, Borzsonyi A and Kalashnikov M 2021 Opt. Express 29 5915
[9] Kim J I, Yoon J W, Yang J M, Kim Y G, Sung J H, Lee S K and Nam C H 2022 Opt. Express 30 26212
[10] Zhu B B, Fu Z Y, Chen Y D, Peng S N, Jin C, Fan G Y, Zhang S, Wang S J, Ru H, Tian C S, Wang Y H, Kapteyn H, Murnane M and Tao Z S 2022 Opt. Express 30 2918
[11] Zhang S, Fu Z Y, Zhu B B, Fan G Y, Chen Y D, Wang S J, Liu Y X, Baltuska A, Jin C, Tian C S and Tao Z S 2021 Light: Sci. Appl. 10 53
[12] Emaury F, Saraceno C J, Debord B, Ghosh D, Diebold A, Gerome F, Sudmeyer T, Benabid F and Keller U 2014 Opt. Lett. 39 6843
[13] Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
[14] Arnold C L, Zhou B, Akturk S, Chen S, Couairon A and Mysyrowicz A 2010 New J. Phys. 12 073015
[15] Tsai M S, Liang A Y, Tsai C L, Lai P W, Lin M W and Chen M C 2022 Sci. Adv. 8 eabo1945
[16] Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I and Heyl C M 2022 Optica 9 197
[17] Rueda P, Videla F, Witting T, Torchia G A and Furch F J 2021 Opt. Express 29 27004
[18] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y and Nubbemeyer T 2018 Opt. Lett. 43 5877
[19] Song J, Wang Z, Lv R, Wang X, Teng H, Zhu J and Wei Z 2021 Appl. Phys. B 127 50
[20] Kaumanns M, Kormin D, Nubbemeyer T, Pervak V and Karsch S 2020 Opt. Lett. 46 929
[1] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[2] Application of a characterized difference-frequency laser source to carbon monoxide trace detection
Alireza Khorsandi, Zahra Shabani, Monireh Ranjbar, and S. Ali Hoseinzadeh Salati . Chin. Phys. B, 2012, 21(6): 064213.
[3] Propagation of cylindrical vector beams in a turbulent atmosphere
Pu Ji-Xiong(蒲继雄), Wang Tao(王涛), Lin Hui-Chuan(林惠川), and Li Cheng-Liang(李成良). Chin. Phys. B, 2010, 19(8): 089201.
[4] Application of $\alpha$-$\beta$-$\gamma$ filtering to real-time atmosphere methane concentration measurement
Kan Rui-Feng (阚瑞峰), Liu Wen-Qing (刘文清), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Chen Dong (陈东), Wang Min (王敏). Chin. Phys. B, 2006, 15(6): 1379-1383.
[5] Influence of laser intensity in second-harmonic detection with tunable diode laser multi-pass absorption spectroscopy
Kan Rui-Feng (阚瑞峰), Dong Feng-Zhong (董凤忠), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Liu Cheng (刘诚), Wang Min (王敏), Gao Shan-Hu (高山虎), Chen Jun (陈军). Chin. Phys. B, 2005, 14(9): 1904-1909.
No Suggested Reading articles found!