Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054209    DOI: 10.1088/1674-1056/ad2bf0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of extreme ultraviolet vortex beam based on high harmonic generation

Bo Xiao(肖礴)1, Yi-Wen Zhao(赵逸文)1, Fang-Jing Cheng(程方晶)1, Ge-Wen Wang(王革文)1, Wei Jiang(姜威)1, Yi-Chen Wang(王一琛)1, Jie Hu(胡杰)1, Hong-Jing Liang(梁红静)2,†, and Ri Ma(马日)1,‡
1. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2. College of Science, Jilin Institute of Chemical Technology, Jilin 132022, China
Abstract  In high harmonic generation (HHG), Laguerre-Gaussian (LG) beams are used to generate extreme ultraviolet (XUV) vortices with well-defined orbital angular momentum (OAM), which have potential applications in fields such as microscopy and spectroscopy. An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work. It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure. The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus. The ring-like structures observed in the vortex harmonics, and the interference of quantum paths provide an explanation for the distinct structural characteristics. Moreover, by adjusting the relative position between the jet and laser focus, it is possible to discern the contributions from different quantum paths. The optimization of the HH vortex field is applicable to the XUV, which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.
Keywords:  high harmonic generation      phase matching      extreme ultraviolet vortex beam      quantum path interference  
Received:  08 December 2023      Revised:  03 February 2024      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  47.32.cb (Vortex interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974137, 92250306, and 12304302), the National Key Program for Science and Technology Research and Development (Grant No. 2019YFA0307700), the Natural Science Foundation of Jilin Province, China (Grant Nos. YDZJ202101ZYTS157 and YDZJ202201ZYTS314), and the Scientific Research Foundation of Jilin Provincial Education Department, China (Grant No. JJKH20230283KJ).
Corresponding Authors:  Hong-Jing Liang,E-mail:lianghongjing@jlict.edu.cn;Ri Ma,E-mail: rma@jlu.edu.cn     E-mail:  lianghongjing@jlict.edu.cn

Cite this article: 

Bo Xiao(肖礴), Yi-Wen Zhao(赵逸文), Fang-Jing Cheng(程方晶), Ge-Wen Wang(王革文), Wei Jiang(姜威), Yi-Chen Wang(王一琛), Jie Hu(胡杰), Hong-Jing Liang(梁红静), and Ri Ma(马日) Optimization of extreme ultraviolet vortex beam based on high harmonic generation 2024 Chin. Phys. B 33 054209

[1] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[2] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M and Yuan X 2019 Light Sci. Appl. 8 90
[3] Allen L, Beijersbergen M W, Spreeuw R J and Woerdman J P 1992 Phys. Rev. A 45 8185
[4] Laabs H, Gao C and Weber H 1999 J. Mod. Opt. 46 709
[5] Bagini V, Frezza F, Santarsiero M, Schettini G and Spagnolo G S 1996 J. Mod. Opt. 43 1155
[6] Grier D G 2003 Nature 424 810
[7] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[8] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon. 7 66
[9] Forbes K A 2019 Phys. Rev. Lett. 122 103201
[10] De Ninno G, Wtzel J, Ribič P R, et al. 2020 Nat. Photon. 14 554
[11] Tamm C and Weiss C 1990 J. Opt. Soc. Am. B 7 1034
[12] Heckenberg N, McDuff R, Smith C and White A 1992 Opt. Lett. 17 221
[13] Turnbull G A, Robertson D, Smith G, Allen L and Padgett M 1996 Opt. Commun. 127 183
[14] Forbes A, Dudley A and McLaren M 2016 Adv. Opt. Photon. 8 200
[15] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taieb R and Ruchon T 2016 Nat. Commun. 7 12583
[16] Hernandez-Garcia C, Picon A, San Roman J and Plaja L 2013 Phys. Rev. Lett. 111 083602
[17] Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mucke O D, and Kartner F X 2017 Light Sci. Appl. 6 e16187
[18] Paul P M, Toma E S, Breger P, Mullot G, AugGéneaux F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
[19] Bostedt C, Bozek J, Bucksbaum P, Coffee R, Hastings J, Huang Z, Lee R, Schorb S, Corlett J and Denes P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003
[20] Winterfeldt C, Spielmann C and Gerber G 2008 Rev. Mod. Phys. 80 117
[21] Teubner U and Gibbon P 2009 Rev. Mod. Phys. 81 445
[22] Lang Y, Peng Z Y and Zhao Z X 2022 Chin. Phys. Lett. 39 114201
[23] Peng Z Y, Lang Y, Zhu Y L, Zhao J, Zhang D W, Zhao Z X and Yuan J M 2023 Chin. Phys. Lett. 40 054203
[24] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201
[25] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205
[26] Ghimire S and Reis D A 2018 Nat. Phys. 15 10
[27] Popmintchev T, Chen M-C, Arpin P, Murnane M M and Kapteyn H C 2010 Nat. Photon. 4 822
[28] Zürch M, Kern C, Hansinger P, Dreischuh A and Spielmann C 2012 Nat. Phys. 8 743
[29] Patchkovskii S and Spanner M 2012 Nat. Phys. 8 707
[30] Han J X, Guan Z, Wang B Y and Jin C 2023 Chin. Phys. B 32 124210
[31] Hernández-García C, Roman J S, Plaja L and Pic on A 2015 New. J. Phys. 17 093029
[32] Wang B Y, Han J X and Jin C 2023 Chin. Phys. B 32 124208
[33] Gao J X, Yang C, Ge X C, Zheng Y H, Zeng Z N and Li R X 2023 Opt. Express 32 871
[34] Gariepy G, Leach J, Kim K T, Hammond T J, Frumker E, Boyd R W and Corkum P B 2014 Phys. Rev. Lett. 113 153901
[35] Gauthier D, Ribič P R, Adhikary G, Camper A, Chappuis C, Cucini R, DiMauro L F, Dovillaire G, Frassetto F, Géneaux R, Miotti P, Poletto L, Ressel B, Spezzani C, Stupar M, Ruchon T and De Ninno G 2017 Nat. Commun. 8 14971
[36] Kong F Q, Zhang C M, Bouchard F, Li Z Y, Brown G G, Ko D H, Hammond T J, Arissian L, Boyd R W, Karimi E and Corkum P B 2017 Nat. Commun. 8 14971
[37] Rego L, Roman J S, Picon A, Plaja L and Hernandez-Garcia C 2016 Phys. Rev. Lett. 117 163202
[38] Paufler W, Böning B and Fritzsche S 2019 Phys. Rev. A 100 013422
[39] Jin C, Li B, Wang K, Xu C, Tang X, Yu C and Lin C D 2020 Phys. Rev. A 102 033113
[40] Guan Z, Yin Z M and Jin C 2022 Phys. Rev. A 105 023107
[41] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[42] Rudawski P, Heyl C, Brizuela F, Schwenke J, Persson A, Mansten E, Rakowski R, Rading L, Campi F and Kim B 2013 Rev. Sci. Instrum. 84 073103
[43] Niu Y, Liu F Y, Liu Y, Liang H J, Yang Y J, Ma R and Ding D J 2017 Opt. Commun. 397 118
[44] Balcou P, Salières P, L’Huillier A and Lewenstein M 1997 Phys. Rev. A 55 3204
[45] Balcou P, Dederichs A S, Gaarde M B and L’Huillier A 1999 J. Phys. B:. At. Mol. Opt. Phys. 32 2973
[46] Gaarde M B, Salin F, Constant E, Balcou P, Schafer K J, Kulander K C and L’Huillier A 1999 Phys. Rev. A 59 1367
[47] Salières P, L’Huillier A and Lewenstein M 1995 Phys. Rev. Lett. 74 3776
[48] Schapper F, Holler M, Auguste T, Zaïr A, Weger M, Salières P, Gall-mann L and Keller U 2010 Opt. Express 18 2987
[49] Wang G L, Jin C, Le A T and Lin C D 2011 Phys. Rev. A 84 053404
[50] Lewenstein M, Salieres P and L’Huillier A 1995 Phys. Rev. A 52 4747
[51] Gaarde M B and Schafer K J 2002 Phys. Rev. A 65 031406
[1] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[2] Time-dependent variational approach to solve multi-dimensional time-dependent Schrödinger equation
Mingrui He(何明睿), Zhe Wang(王哲), Lufeng Yao(姚陆锋), and Yang Li(李洋). Chin. Phys. B, 2023, 32(12): 124206.
[3] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[4] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[5] Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
Lixin He(何立新), Xiaosong Zhu(祝晓松), Wei Cao(曹伟), Pengfei Lan(兰鹏飞), and Peixiang Lu(陆培祥). Chin. Phys. B, 2022, 31(12): 123301.
[6] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[7] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[8] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[9] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[10] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[11] Influence of intraband motion on the interband excitation and high harmonic generation
Rui-Xin Zuo(左瑞欣), Xiao-Hong Song(宋晓红), Xi-Wang Liu(刘希望), Shi-Dong Yang(杨士栋), Wei-Feng Yang(杨玮枫). Chin. Phys. B, 2019, 28(9): 094208.
[12] Geometrical optics-based ray field tracing method for complex source beam applications
Min Gao(高敏), Feng Yang(杨峰), Xue-Wu Cui(崔学武), Rui Wang(王瑞). Chin. Phys. B, 2018, 27(4): 040401.
[13] A tunable XUV monochromatic light source based on the time preserving grating selection of high-order harmonic generation
Yong Niu(牛永), Hongjing Liang(梁红静), Yi Liu(刘燚), Fangyuan Liu(刘方圆), Ri Ma(马日), Dajun Ding(丁大军). Chin. Phys. B, 2017, 26(7): 074222.
[14] Frequency dependence of quantum path interference in non-collinear high-order harmonic generation
Shi-Yang Zhong(钟诗阳), Xin-Kui He(贺新奎), Hao Teng(滕浩), Peng Ye(叶蓬), Li-Feng Wang(汪礼锋), Peng He(何鹏), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(2): 023301.
[15] All optical method for measuring the carrier envelope phase from half-cycle cutoffs
Li Qian-Guang (李钱光), Chen Huan (陈欢), Zhang Xiu (张秀), Yi Xu-Nong (易煦农). Chin. Phys. B, 2014, 23(7): 074206.
No Suggested Reading articles found!