Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074208    DOI: 10.1088/1674-1056/ad47b1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser

Zhetao Zhao(赵哲韬)1, Qinke Shu(舒沁珂)1, Ziyi Xie(解梓怡)1, Yuxuan Ren(任俞宣)1, Ying Zhang(张颖)1, Bo Yuan(袁博)1, Chunbo Zhao(赵春勃)2,†, Junsong Peng(彭俊松)1,3,4,‡, and Heping Zeng(曾和平)1,4,5
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
2 China Academy of Space Technology, Xi'an 710100, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
4 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China;
5 Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
Abstract  Dissipative soliton resonance (DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.
Keywords:  mode locking      laser      fiber      pulse  
Received:  22 March 2024      Revised:  22 April 2024      Accepted manuscript online:  06 May 2024
PACS:  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0301000) and the National Natural Science Foundation of China (Grant Nos. 11621404, 11561121003, 11727812, 61775059, 12074122, 62022033, and 11704123). Sustainedly supported by the National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKT2022KL504008), the Shanghai Natural Science Foundation (Grant No. 23ZR1419000), and the National Key Laboratory Foundation of China (Grant No. 6142411196307).
Corresponding Authors:  Chunbo Zhao, Junsong Peng     E-mail:  zhaocb38@163.com;jspeng@lps.ecnu.edu.cn

Cite this article: 

Zhetao Zhao(赵哲韬), Qinke Shu(舒沁珂), Ziyi Xie(解梓怡), Yuxuan Ren(任俞宣), Ying Zhang(张颖), Bo Yuan(袁博), Chunbo Zhao(赵春勃), Junsong Peng(彭俊松), and Heping Zeng(曾和平) Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser 2024 Chin. Phys. B 33 074208

[1] Chang W, Ankiewicz A, Soto-Crespo J and Akhmediev N 2008 Phys. Rev. A 78 023830
[2] Hendow S T and Shakir S A 2010 Opt. Express 18 10188
[3] Kalosha V, Ponomarev E, Chen L and Bao X 2006 Opt. Express 14 2071
[4] Tan J, Zhong Z, Liu Y and Zeng D 2015 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) 2015 7368632
[5] Evans R, Camacho-Lóez S, Pérez-Gutiérrez F and Aguilar G 2008 Opt. Express 16 7481
[6] Matsas V J, Newson T P and Zervas M N 1992 Opt. Commun. 92 61
[7] Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 J. Opt. Soc. Am. B 25 1972
[8] Chang W, Soto-Crespo J M, Ankiewicz A and Akhmediev N 2009 Phys. Rev. A 79 033840
[9] Grelu P and Akhmediev N 2012 Nat. Photonics 6 84
[10] Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z and Gao C 2012 J. Lightwave Technol. 30 2502
[11] Huang X, Li X, Chen E, Pan Z, Guo P, Sun L, Wang Y and Zhao W 2024 IEEE J. Sel. Top. Quantum Electron. 2023 3319342
[12] Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905
[13] Liu X and Pang M 2019 Laser Photonics Rev. 13 1800333
[14] Liu X, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901
[15] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264
[16] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304
[17] Li Y Y, Gao B, Ma C Y, Wu G, Huo J Y, Han Y, Wageh S, Al-Hartomy O A, Al-Sehemi A G and Liu L 2023 Laser Photonics Rev. 17 2200596
[18] Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580
[19] Li J, Wang C and Wang P 2024 Opt. Fiber Technol. 82 103637
[20] Lyu Y, Shi H, Wei C, Li H, Li J and Liu Y 2017 Photonics Res. 5 612
[21] Li X, Liu X, Hu X, Wang L, Lu H, Wang Y and Zhao W 2010 Opt. Lett. 35 3249
[22] Mei L, Chen G, Xu L, Zhang X, Gu C, Sun B and Wang A 2014 Opt. Lett. 39 3235
[23] Chowdhury S D, Pal A, Chatterjee S, Sen R and Pal M 2018 J. Lightwave Technol. 36 5773
[24] Armas-Rivera I, Cuadrado-Laborde C, Carrascosa A, Kuzin E, Beltrán-Pérez G, Díez A and Andrés M V 2016 Opt. Express 24 9966
[25] Tang Y, Li F and Yu X 2022 Optics Laser Technol. 152 108147
[26] Chernysheva M, Krylov A, Ogleznev A, Arutyunyan N, Pozharov A, Obraztsova E and Dianov E 2012 Opt. Express 20 23994
[27] Ortaç B, Plötner M, Schreiber T, Limpert J and Tünnermann A 2007 Opt. Express 15 15595
[28] Nishizawa N, Jin L, Kataura H and Sakakibara Y 2015 Photonics 2 808
[29] Pulikkaseril C, Stewart L A, Roelens M A F, Baxter G W, Poole S and Frisken S 2011 Opt. Express 19 8458
[30] Peng J and Boscolo S 2016 Sci. Rep. 6 25995
[31] Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z, Sun Z and Zhao J 2021 Nat. Commun. 12 6712
[32] Lourdesamy J P, Runge A F, Alexander T J, Hudson D D, BlancoRedondo A and de Sterke C M 2022 Nat. Phys. 18 59
[33] Runge A F, Hudson D D, Tam K K, de Sterke C M and BlancoRedondo A 2020 Nat. Photonics 14 492
[34] Nakazawa M, Yoshida M and Hirooka T 2014 Optica 1 15
[35] Xu K, Sung J Y, Wong C Y, Cheng Z, Chow C W and Tsang H K 2014 Opt. Commun. 329 23
[36] Boscolo S, Finot C and Turitsyn S K 2015 IEEE Photonics J. 7 7802008
[37] Yue L, Liu Y, Cai W, Cao D, Li Y and Wu J 2023 Opt. Commun. 533 129308
[38] Ren Y, Ge J, Li X, Peng J and Zeng H 2024 Chin. Phys. B 33 034210
[39] Haus H A 2000 IEEE J. Sel. Top. Quantum Electron. 6 1173
[40] Agrawal G P 1990 IEEE Photonics Technol. Lett. 2 875
[41] Peng J and Zeng H 2018 Laser Photonics Rev. 12 1800009
[42] Peng J and Zeng H 2019 Phys. Rev. Appl. 11 044068
[43] Peng J, Sorokina M, Sugavanam S, Tarasov N, Churkin D V, Turitsyn S K and Zeng H 2018 Commun. Phys. 1 20
[44] Boscolo S, Finot C, Karakuzu H and Petropoulos P 2014 Opt. Lett. 39 438
[45] Cheng Z, Li H and Wang P 2015 Opt. Express 23 5972
[46] Agrawal G P 2019 Nonlinear Fiber Optics 50 309
[1] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[2] Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si
Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏). Chin. Phys. B, 2024, 33(8): 087901.
[3] Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操). Chin. Phys. B, 2024, 33(8): 083102.
[4] Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials
Zhaowen Xu(徐兆文), Xue Bai(白雪), Jian Ma(马健), Zhuangzhuang Wan(万壮壮), and Chaoqun Wang(王超群). Chin. Phys. B, 2024, 33(8): 087801.
[5] Piezoelectric fibers based on silk fibroin with excellent output performance
Wenqiang Zhen(甄文强), Jie Chen(陈杰), Suna Fan(范苏娜), and Yaopeng Zhang(张耀鹏). Chin. Phys. B, 2024, 33(8): 088701.
[6] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[7] Internal phase control of fiber laser array based on photodetector array
Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴). Chin. Phys. B, 2024, 33(7): 074201.
[8] Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation
Yang Li(李阳), En-Ming Xu(徐恩明), Rui-Jia Chen(陈睿佳), Yu-Gang Shee, and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(7): 074209.
[9] Manipulating the electron dynamics in the non-sequential double ionization process of Ar atoms by an orthogonal two-color laser field
Pengzhao Wang(王鹏昭), Lijie Qian(钱丽洁), Zhenrong Sun(孙真荣), and Yan Yang(杨岩). Chin. Phys. B, 2024, 33(6): 063201.
[10] Velocity analysis of supersonic jet flow in double-cone ignition scheme
Zhong-Yuan Zhu(朱仲源), Cheng-Long Zhang(张成龙), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(6): 065203.
[11] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[12] Corrigendum to "Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields"
Xiaoyong Lu(卢肖勇), Lide Wang(王立德), and Yunfei Li(李云飞). Chin. Phys. B, 2024, 33(6): 069901.
[13] Imaging plate scanners calibration and the attenuation behavior of imaging plate signals
Nan Bo(薄楠) and Nai-Yan Wang(王乃彦). Chin. Phys. B, 2024, 33(6): 060701.
[14] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[15] Estimation of cancer cell migration in biomimetic random/oriented collagen fiber microenvironments
Jingru Yao(姚静如), Guoqiang Li(李国强), Xiyao Yao(姚喜耀), Lianjie Zhou(周连杰), Zhikai Ye(叶志凯), Yanping Liu(刘艳平), Dongtian Zheng(郑栋天), Ting Tang(唐婷), Kena Song(宋克纳), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2024, 33(5): 058706.
No Suggested Reading articles found!