ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser |
Zhetao Zhao(赵哲韬)1, Qinke Shu(舒沁珂)1, Ziyi Xie(解梓怡)1, Yuxuan Ren(任俞宣)1, Ying Zhang(张颖)1, Bo Yuan(袁博)1, Chunbo Zhao(赵春勃)2,†, Junsong Peng(彭俊松)1,3,4,‡, and Heping Zeng(曾和平)1,4,5 |
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 2 China Academy of Space Technology, Xi'an 710100, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 4 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; 5 Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China |
|
|
Abstract Dissipative soliton resonance (DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.
|
Received: 22 March 2024
Revised: 22 April 2024
Accepted manuscript online: 06 May 2024
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0301000) and the National Natural Science Foundation of China (Grant Nos. 11621404, 11561121003, 11727812, 61775059, 12074122, 62022033, and 11704123). Sustainedly supported by the National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKT2022KL504008), the Shanghai Natural Science Foundation (Grant No. 23ZR1419000), and the National Key Laboratory Foundation of China (Grant No. 6142411196307). |
Corresponding Authors:
Chunbo Zhao, Junsong Peng
E-mail: zhaocb38@163.com;jspeng@lps.ecnu.edu.cn
|
Cite this article:
Zhetao Zhao(赵哲韬), Qinke Shu(舒沁珂), Ziyi Xie(解梓怡), Yuxuan Ren(任俞宣), Ying Zhang(张颖), Bo Yuan(袁博), Chunbo Zhao(赵春勃), Junsong Peng(彭俊松), and Heping Zeng(曾和平) Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser 2024 Chin. Phys. B 33 074208
|
[1] Chang W, Ankiewicz A, Soto-Crespo J and Akhmediev N 2008 Phys. Rev. A 78 023830 [2] Hendow S T and Shakir S A 2010 Opt. Express 18 10188 [3] Kalosha V, Ponomarev E, Chen L and Bao X 2006 Opt. Express 14 2071 [4] Tan J, Zhong Z, Liu Y and Zeng D 2015 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) 2015 7368632 [5] Evans R, Camacho-Lóez S, Pérez-Gutiérrez F and Aguilar G 2008 Opt. Express 16 7481 [6] Matsas V J, Newson T P and Zervas M N 1992 Opt. Commun. 92 61 [7] Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 J. Opt. Soc. Am. B 25 1972 [8] Chang W, Soto-Crespo J M, Ankiewicz A and Akhmediev N 2009 Phys. Rev. A 79 033840 [9] Grelu P and Akhmediev N 2012 Nat. Photonics 6 84 [10] Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z and Gao C 2012 J. Lightwave Technol. 30 2502 [11] Huang X, Li X, Chen E, Pan Z, Guo P, Sun L, Wang Y and Zhao W 2024 IEEE J. Sel. Top. Quantum Electron. 2023 3319342 [12] Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905 [13] Liu X and Pang M 2019 Laser Photonics Rev. 13 1800333 [14] Liu X, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901 [15] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264 [16] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304 [17] Li Y Y, Gao B, Ma C Y, Wu G, Huo J Y, Han Y, Wageh S, Al-Hartomy O A, Al-Sehemi A G and Liu L 2023 Laser Photonics Rev. 17 2200596 [18] Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580 [19] Li J, Wang C and Wang P 2024 Opt. Fiber Technol. 82 103637 [20] Lyu Y, Shi H, Wei C, Li H, Li J and Liu Y 2017 Photonics Res. 5 612 [21] Li X, Liu X, Hu X, Wang L, Lu H, Wang Y and Zhao W 2010 Opt. Lett. 35 3249 [22] Mei L, Chen G, Xu L, Zhang X, Gu C, Sun B and Wang A 2014 Opt. Lett. 39 3235 [23] Chowdhury S D, Pal A, Chatterjee S, Sen R and Pal M 2018 J. Lightwave Technol. 36 5773 [24] Armas-Rivera I, Cuadrado-Laborde C, Carrascosa A, Kuzin E, Beltrán-Pérez G, Díez A and Andrés M V 2016 Opt. Express 24 9966 [25] Tang Y, Li F and Yu X 2022 Optics Laser Technol. 152 108147 [26] Chernysheva M, Krylov A, Ogleznev A, Arutyunyan N, Pozharov A, Obraztsova E and Dianov E 2012 Opt. Express 20 23994 [27] Ortaç B, Plötner M, Schreiber T, Limpert J and Tünnermann A 2007 Opt. Express 15 15595 [28] Nishizawa N, Jin L, Kataura H and Sakakibara Y 2015 Photonics 2 808 [29] Pulikkaseril C, Stewart L A, Roelens M A F, Baxter G W, Poole S and Frisken S 2011 Opt. Express 19 8458 [30] Peng J and Boscolo S 2016 Sci. Rep. 6 25995 [31] Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z, Sun Z and Zhao J 2021 Nat. Commun. 12 6712 [32] Lourdesamy J P, Runge A F, Alexander T J, Hudson D D, BlancoRedondo A and de Sterke C M 2022 Nat. Phys. 18 59 [33] Runge A F, Hudson D D, Tam K K, de Sterke C M and BlancoRedondo A 2020 Nat. Photonics 14 492 [34] Nakazawa M, Yoshida M and Hirooka T 2014 Optica 1 15 [35] Xu K, Sung J Y, Wong C Y, Cheng Z, Chow C W and Tsang H K 2014 Opt. Commun. 329 23 [36] Boscolo S, Finot C and Turitsyn S K 2015 IEEE Photonics J. 7 7802008 [37] Yue L, Liu Y, Cai W, Cao D, Li Y and Wu J 2023 Opt. Commun. 533 129308 [38] Ren Y, Ge J, Li X, Peng J and Zeng H 2024 Chin. Phys. B 33 034210 [39] Haus H A 2000 IEEE J. Sel. Top. Quantum Electron. 6 1173 [40] Agrawal G P 1990 IEEE Photonics Technol. Lett. 2 875 [41] Peng J and Zeng H 2018 Laser Photonics Rev. 12 1800009 [42] Peng J and Zeng H 2019 Phys. Rev. Appl. 11 044068 [43] Peng J, Sorokina M, Sugavanam S, Tarasov N, Churkin D V, Turitsyn S K and Zeng H 2018 Commun. Phys. 1 20 [44] Boscolo S, Finot C, Karakuzu H and Petropoulos P 2014 Opt. Lett. 39 438 [45] Cheng Z, Li H and Wang P 2015 Opt. Express 23 5972 [46] Agrawal G P 2019 Nonlinear Fiber Optics 50 309 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|