Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074301    DOI: 10.1088/1674-1056/ad3033
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pipeline thickness estimation using the dispersion of higher-order SH guided waves

Zhengchen Dai(代政辰)1, Jinxia Liu(刘金霞)1,†, Yunfei Long(龙云飞)1, Jianhai Zhang(张建海)2, Tribikram Kundu3,4, and Zhiwen Cui(崔志文)1,5,‡
1 Department of Acoustics and Microwave Physics, College of Physics, Jilin University, Changchun 130012, China;
2 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China;
3 Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, Arizona 85721, USA;
4 College of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
5 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal (SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than 1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
Keywords:  pipeline wall thickness      higher-order modes      SH guided waves      dispersion  
Received:  11 December 2023      Revised:  29 February 2024      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  43.58.+z (Acoustical measurements and instrumentation)  
  43.60.+d (Acoustic signal processing)  
Fund: Project supported by the Natural Science Foundation of Jilin Province of China (Grant Nos.20240402081GH and 20220101012JC),the National Natural Science Foundation of China (Grant No.42074139),and the State Key Laboratory of Acoustics,Chinese Academy of Sciences (Grant No.SKLA202308).
Corresponding Authors:  Jinxia Liu, Zhiwen Cui     E-mail:  jinxia@jlu.edu.cn;cuizw@jlu.edu.cn

Cite this article: 

Zhengchen Dai(代政辰), Jinxia Liu(刘金霞), Yunfei Long(龙云飞), Jianhai Zhang(张建海), Tribikram Kundu, and Zhiwen Cui(崔志文) Pipeline thickness estimation using the dispersion of higher-order SH guided waves 2024 Chin. Phys. B 33 074301

[1] Olisa S C, Khan M A and Starr A 2021 Sensors 21 811
[2] Vogelaar B and Golombok M 2016 Mechanical Systems and Signal Processing 78 107
[3] Lu D H, Cong G P and Li B 2022 J Press Vess-T Asme 144 051801
[4] Simonov D, Vavilov V and Chulkov A 2020 Sensor Review 40 283
[5] Nguyen L and Miro J V 2020 IEEE Sensors Journal 20 14465
[6] Chen Y, Dong S, Zang Z, Ao C, Liu H, Gao M, Ma S, Zhang E and Cao J 2021 Ocean Engineering 234 108865
[7] Kiapasha Z, Yahaghi E, Mirzapour M, Monem S and Nekoei J 2020 Journal of Nondestructive Evaluation 39 10
[8] Koodalil D, Rajagopal P and Balasubramaniam K 2021 Ultrasonics 114 106429
[9] Zima B, Woloszyk K and Garbatov Y 2022 Ocean Engineering 253 111318
[10] Li W B, Hu N and Deng M X 2021 Ultrasonics 113 106356
[11] El Mountassir M, Yaacoubi S, Mourot G and Maquin D 2018 Mechanical Systems and Signal Processing 112 61
[12] Wang X, Qin C and Liu J 2019 Chinese Journal of Scientific Instrument 40 166
[13] Li Z, Jing L, Wang W, Lee P and Murch R 2018 J. Acoust. Soc. Am. 144 2824
[14] Belanger P 2014 Ultrasonics 54 1078
[15] De Castro Ribeiro M G, Kubrusly A C, Ayala H V H and Dixon S 2021 IEEE Access 9 40836
[16] Thon A, Painchaud G, Le D A and Belanger P 2022 NDT and E International 128 102631
[17] Cui H, Li B, Zhou L B and Liu W 2022 Smart Materials and Structures 31 095018
[18] Sun H, Peng L, Lin J, Wang S, Zhao W and Huang S 2022 IEEE Transactions on Industrial Informatics 18 3235
[19] Dixon S, Petcher P A, Fan Y, Maisey D and Nickolds P 2013 J. Phys. D: Appl. Phys. 46 445502
[20] Wrblewski R and Stawiski B 2020 Buildings 10 154
[21] Velichko A and Wilcox P D 2009 J. Acoust. Soc. Am. 125 3623
[22] Zhaoa X and Rose J L 2004 J. Acoust. Soc. Am. 115 1912
[23] Luo W, Zhao X and Rose J L 2005 Journal of Pressure Vessel Technology 127 345
[24] Zhai G F and Li Y Q 2020 Chin. Phys. B 29 054303
[25] Qiu H, Chen M and Li F 2022 Mechanical Systems and Signal Processing 165 108390
[26] Nakamura N, Ogi H and Hirao M 2011 Jpn. J. Appl. Phys. 50 07CH17
[27] Kubrusly A C, Freitas M A, Weid J P and Dixon S 2019 NDT and E International 101 94
[28] Nakamura N, Ogi H and Hirao M 2013 Jpn. J. Appl. Phys. 52 07HC14
[29] Kubrusly A C and Dixon S 2021 Ultrasonics 117 106544
[30] Becerril García D and Cortés-PerézJ2022 Tunnelling and Underground Space Technology 122 104397
[31] Hu J, Duan J, Chen Z, Li H, Xie J and Chen H 2018 Mechanical Systems and Signal Processing 99 702
[1] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[2] Reconstructions of time-evolving sound-speed fields perturbed by deformed and dispersive internal solitary waves in shallow water
Qin-Ran Li(李沁然), Chao Sun(孙超), Lei Xie(谢磊), and Xiao-Dong Huang(黄晓冬). Chin. Phys. B, 2023, 32(12): 124701.
[3] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[4] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[5] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[6] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[7] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[8] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[9] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[10] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[11] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[12] Single SH guided wave mode generation method for PPM EMATs
Guo-Fu Zhai(翟国富), Yong-Qian Li(李永虔). Chin. Phys. B, 2020, 29(5): 054303.
[13] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[14] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[15] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
No Suggested Reading articles found!