Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087503    DOI: 10.1088/1674-1056/27/8/087503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy

Shou-Peng Lyu(吕守鹏)1,2, Li Yu(俞理)1, Jian-Wei Huang(黄建伟)1,2, Cheng-Tian Lin(林成天)3, Qiang Gao(高强)1,2, Jing Liu(刘静)1,2, Guo-Dong Liu(刘国东)1, Lin Zhao(赵林)1, Jie Yuan(袁洁)1, Chuang-Tian Chen(陈创天)4, Zu-Yan Xu(许祖彦)4, Xing-Jiang Zhou(周兴江)1,2,5
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany;
4 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

The detailed information of the electronic structure is the key to understanding the nature of charge density wave (CDW) order and its relationship with superconducting order in the microscopic level. In this paper, we present a high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) study on the three-dimensional (3D) hole-like Fermi surface around the Brillouin zone center in a prototypical quasi-one-dimensional CDW and superconducting system ZrTe3. Double Fermi surface sheets are clearly resolved for the 3D hole-like Fermi surface around the zone center. The 3D Fermi surface shows a pronounced shrinking with increasing temperature. In particular, the quasiparticle scattering rate along the 3D Fermi surface experiences an anomaly near the charge density wave transition temperature of ZrTe3 (~63 K). The signature of electron-phonon coupling is observed with a dispersion kink at~20 meV; the strength of the electron-phonon coupling around the 3D Fermi surface is rather weak. These results indicate that the 3D Fermi surface is also closely connected to the charge-density-wave transition and suggest a more global impact on the entire electronic structure induced by the CDW phase transition in ZrTe3.

Keywords:  angle-resolved photoemission spectroscopy      ZrTe3      scattering rate      electron-phonon coupling  
Received:  22 May 2018      Revised:  29 May 2018      Accepted manuscript online: 
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  75.78.-n (Magnetization dynamics)  
  75.90.+w (Other topics in magnetic properties and materials)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2015CB921301), the National Natural Science Foundation of China (Grant Nos. 11574360, 11534007, and 11334010), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300).

Corresponding Authors:  Li Yu, Xing-Jiang Zhou     E-mail:  li.yu@iphy.ac.cn;XJZhou@iphy.ac.cn

Cite this article: 

Shou-Peng Lyu(吕守鹏), Li Yu(俞理), Jian-Wei Huang(黄建伟), Cheng-Tian Lin(林成天), Qiang Gao(高强), Jing Liu(刘静), Guo-Dong Liu(刘国东), Lin Zhao(赵林), Jie Yuan(袁洁), Chuang-Tian Chen(陈创天), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江) Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy 2018 Chin. Phys. B 27 087503

[1] Gabovich A M, Voitenko A I, Ekino T, Li M S, Szymczak H and Pekala M 2010 Adv. Condens. Matter Phys. 2010 1
[2] Pfleiderer C 2009 Rev. Mod. Phys. 81 1551
[3] He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q and Zhou X J 2013 Nat. Mater. 12 605
[4] Zhu X, Ning W, Li L, Ling L, Zhang R, Zhang J, Wang K, Liu Y, Pi L, Ma Y, Du H, Tian M, Sun Y, Petrovic C and Zhang Y 2016 Sci. Rep. 6 26974
[5] Cui S, He L P, Hong X C, Zhu X D, Petrovic C and Li S Y 2016 Chin. Phys. B 25 077403
[6] Denholme S J, Yukawa A, Tsumura K, Nagao M, Tamura R, Watauchi S, Tanaka I, Takayanagi H and Miyakawa N 2017 Sci. Rep. 7 45217
[7] Kidd T E, Miller T, Chou M Y and Chiang T C 2002 Phys. Rev. Lett. 88 226402
[8] Kolekar S, Bonilla M, Ma Y, Diaz H C and Batzill M 2017 2D Mater. 5 015006
[9] Kwang-Hua C W 2012 Chem. Phys. 409 37
[10] Schmitt F, Kirchmann P S, Bovensiepen U, Moore R G, Rettig L, Krenz M, Chu J-H, Ru N, Perfetti L, Lu D H, Wolf M, Fisher I R and Shen Z X 2008 Science 321 1649
[11] Yamaya K, Takayanagi S and Tanda S 2012 Phys. Rev. B 85 184513
[12] Yomo R, Yamaya K, Abliz M, Hedo M and Uwatoko Y 2005 Phys. Rev. B 71 132508
[13] Tsuchiya S, Matsubayashi K, Yamaya K, Takayanagi S, Tanda S and Uwatoko Y 2017 New J. Phys. 19 063004
[14] Yamaya K, Yoneda M, Yasuzuka S, Okajima Y and Tanda S 2002 J. Phys.: Condens. Matter. 14 10767
[15] Mirri C, Dusza A, Zhu X, Lei H, Ryu H, Degiorgi L and Petrovic C 2014 Phys. Rev. B 89 035144
[16] Zhu X, Lei H and Petrovic C 2011 Phys. Rev. Lett. 106 246404
[17] Lei H, Zhu X and Petrovic C 2011 Europhys. Lett. 95 17011
[18] Yokoya T, Kiss T, Chainani A, Shin S and Yamaya K 2005 Phys. Rev. B 71 140504
[19] Hoesch M, Cui X, Shimada K, Battaglia C, Fujimori S-i and Berger H 2009 Phys. Rev. B 80 075423
[20] Eaglesham D J, Steeds J W and Wilson J A 1984 J. Phys. C: Solid State Phys. 17 697
[21] Gleason S L, Gim Y, Byrum T, Kogar A, Abbamonte P, Fradkin E, MacDougall G J, Van Harlingen D J, Zhu X, Petrovic C and Cooper S L 2015 Phys. Rev. B 91 155124
[22] Hoesch M, Bosak A, Chernyshov D, Berger H and Krisch M 2009 Phys. Rev. Lett. 102 086402
[23] Hu Y, Zheng F, Ren X, Feng J and Li Y 2015 Phys. Rev. B 91 144502
[24] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101
[25] Zhu X, Lv B, Wei F, Xue Y, Lorenz B, Deng L, Sun Y and Chu C W 2013 Phys. Rev. B 87 024508
[26] Stowe K and Wagner F R 1998 J. Solid State Chem. 138 160
[27] Felser C, Finckh E W, Kleinke H, Rocker F and Tremel W 1998 J. Mater. Chem. 8 1787
[28] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
[29] Seshadri R, Suard E, Felser C, Finckh E W, Maignanc A and Tremel W 1998 J. Mater. Chem. 8 2869
[30] Wu Y, Jo N H, Ochi M, Huang L, Mou D, Budko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[3] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[4] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[5] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[6] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[7] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[10] Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2019, 28(7): 077403.
[11] Direct observation of the f-c hybridization in the ordered uranium films on W(110)
Qiuyun Chen(陈秋云), Shiyong Tan(谭世勇), Wei Feng(冯卫), Lizhu Luo(罗丽珠), Xiegang Zhu(朱燮刚), Xinchun Lai(赖新春). Chin. Phys. B, 2019, 28(7): 077404.
[12] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[13] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[14] The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory
Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹). Chin. Phys. B, 2018, 27(12): 126302.
[15] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
No Suggested Reading articles found!