SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University |
Prev
Next
|
|
|
The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory |
Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹) |
School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract The spin-polarized band structures of an ultrathin Pb/MoTe2/Pb heterostructure are calculated via first-principles density functional theory. The electron-phonon interaction and the superconducting properties of the ultrathin Pb/MoTe2/Pb heterostructure are studied by using the fully anisotropic Migdal-Eliashberg theory powered by Wannier-Fourier interpolation. Due to the complex Fermi surface in this low-dimensional system, the electron-phonon interaction and the superconducting gap display significant anisotropy. The temperature dependence of the superconducting gap can be fitted by solving numerically the Bardeen-Cooper-Schrieffer (BCS) gap equation with an adjustable parameter α, suggesting that phonon-mediated mechanism as its superconducting origin. Large Rashba spin-splitting and superconductivity coexist in this heterostructure, suggesting that this hybrid low-dimensional system will have some specific applications.
|
Received: 29 July 2018
Revised: 30 September 2018
Accepted manuscript online:
|
PACS:
|
63.20.kd
|
(Phonon-electron interactions)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20141441). |
Corresponding Authors:
Gui-Qin Huang
E-mail: huangguiqin@njnu.edu.cn
|
Cite this article:
Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹) The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory 2018 Chin. Phys. B 27 126302
|
[1] |
Hu G, Huang J Q, Wang Y N, Yang T, Dong B J, Wang J Z, Zhao B, Ali S and Zhang Z D 2018 Chin. Phys. B 27 086301
|
[2] |
Tang F D, Wang P P, Wang P, Gan Y, Wang L, Zhang W and Zhang L Y 2018 Chin. Phys. B 27 087307
|
[3] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[4] |
Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103
|
[5] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[6] |
Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
|
[7] |
Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
|
[8] |
Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
|
[9] |
Lee C, Li Q Y, Kalb W, Liu X Z, Berger H and Carpick R W 2010 J. Hone, Science 328 76
|
[10] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[11] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[12] |
Li T and Galli G 2007 J. Phys. Chem. C 111 16192
|
[13] |
Klein A, Tiefenbacher S, Eyert V, Pettenkofer C and Jaegermann W 2001 Phys. Rev. B 64 205416
|
[14] |
Albe K and Klein A 2002 Phys. Rev. B 66 073413
|
[15] |
Ding Y, Wang Y, Ni J, Shi L, Shi S and Tang W 2011 Physica B 406 2254
|
[16] |
Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
|
[17] |
Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
|
[18] |
Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
|
[19] |
Ruppert C, Aslan O B and Heinz T F 2014 Nano. Lett. 146 6231
|
[20] |
Qi J S, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403
|
[21] |
Zhang Q Y, Yang S Y A, Mi W B, Cheng Y C and Schwingenschlögl U 2015 Adv. Mater. 28 959
|
[22] |
Liu X, Du X and Huang G Q 2016 Solid State Commun. 248 43
|
[23] |
Kallatt S, Umesh G, Bhat N and Maiumdar K 2016 Nanoscale 8 15213
|
[24] |
Chen Q, Ouyang Y X, Yuan S J, Li R and Wang I L 2014 ACS Appl. Mater. Interfaces 6 16835
|
[25] |
Lee K, Yun W S and Lee J D 2015 Phys. Rev. B 91 125420
|
[26] |
Huang G Q, Xing Z W and Xing D Y 2016 Phys. Rev. B 93 104511
|
[27] |
Wang Z Y, Xia W and Huang G Q 2017 Physica C 543 52
|
[28] |
Pan S, Liu Q M, Ming F F, Wang K and Xiao X D 2011 J. Phys.: Condens. Matter 23 485001
|
[29] |
Du X, Wang Z Y and Huang G Q 2016 Mater. Res. Express 3 116302
|
[30] |
Li K, Feng X, Zhang W H, et al. 2013 Appl. Phys. Lett. 103 062601
|
[31] |
Xue M Q, Chen G F, Yang H X, Zhu Y H, Wang D M, He J B and Cao T B 2012 J. Am. Chem. Soc. 134 6536
|
[32] |
Zhang J J, Gao B and Dong S 2016 Phys. Rev. B 93 155430
|
[33] |
Huang G Q, Xing Z W and Xing D Y 2015 Appl. Phys. Lett. 106 113107
|
[34] |
Hamann D R 2013 Phys. Rev. B 88 085117
|
[35] |
Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3685
|
[37] |
Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt Dand Marzari N 2008 Comput. Phys. Commun. 178 685
|
[38] |
Ponce S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
|
[39] |
Jiang T, Liu H R, Huang D, Zhang S, Li Y G, Gong X G, Shen Y R, Liu W T and Wu S W 2014 Nat. Nanotechnol. 9 825
|
[40] |
Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
|
[41] |
Grimvall G 1981 The Electron-Phonon Interaction in Metals (New York: North-Holland)
|
[42] |
Allen P B 1983 Solid State Phys. 37 1
|
[43] |
Allen P B and Mitrović B 1982 Solid State Phys. 37 1
|
[44] |
Margine E R anf Giustino F 2013 Phys. Rev. B 87 024505
|
[45] |
Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Nature 418 758
|
[46] |
Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Phys. Rev. B 66 020513
|
[47] |
Vidberg H J and Serene J W 1977 J. Low Temp. Phys. 29 179
|
[48] |
Leavens C R and Ritchie D S 1985 Solid Stata Commun. 53 137
|
[49] |
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
|
[50] |
Johnston D C 2013 Supercond. Sci. Technol. 26 115011
|
[51] |
Hsu Y T, Vaezi A, Fischer M H and Kim E A 2017 Nat. Commun. 8 14985
|
[52] |
Mourik V, Zuo K, Frolov S M, et al. 2012 Science 336 1003
|
[53] |
Das A, Ronen Y, Most Y, et al. 2012 Nat. Phys. 8 887
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|