Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126302    DOI: 10.1088/1674-1056/27/12/126302
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory

Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹)
School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract  

The spin-polarized band structures of an ultrathin Pb/MoTe2/Pb heterostructure are calculated via first-principles density functional theory. The electron-phonon interaction and the superconducting properties of the ultrathin Pb/MoTe2/Pb heterostructure are studied by using the fully anisotropic Migdal-Eliashberg theory powered by Wannier-Fourier interpolation. Due to the complex Fermi surface in this low-dimensional system, the electron-phonon interaction and the superconducting gap display significant anisotropy. The temperature dependence of the superconducting gap can be fitted by solving numerically the Bardeen-Cooper-Schrieffer (BCS) gap equation with an adjustable parameter α, suggesting that phonon-mediated mechanism as its superconducting origin. Large Rashba spin-splitting and superconductivity coexist in this heterostructure, suggesting that this hybrid low-dimensional system will have some specific applications.

Keywords:  heterostructure      electron-phonon coupling      Rashba spin-splitting      superconductivity      first-principles calculation  
Received:  29 July 2018      Revised:  30 September 2018      Accepted manuscript online: 
PACS:  63.20.kd (Phonon-electron interactions)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: 

Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20141441).

Corresponding Authors:  Gui-Qin Huang     E-mail:  huangguiqin@njnu.edu.cn

Cite this article: 

Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹) The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory 2018 Chin. Phys. B 27 126302

[1] Hu G, Huang J Q, Wang Y N, Yang T, Dong B J, Wang J Z, Zhao B, Ali S and Zhang Z D 2018 Chin. Phys. B 27 086301
[2] Tang F D, Wang P P, Wang P, Gan Y, Wang L, Zhang W and Zhang L Y 2018 Chin. Phys. B 27 087307
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
[7] Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
[8] Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
[9] Lee C, Li Q Y, Kalb W, Liu X Z, Berger H and Carpick R W 2010 J. Hone, Science 328 76
[10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[11] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[12] Li T and Galli G 2007 J. Phys. Chem. C 111 16192
[13] Klein A, Tiefenbacher S, Eyert V, Pettenkofer C and Jaegermann W 2001 Phys. Rev. B 64 205416
[14] Albe K and Klein A 2002 Phys. Rev. B 66 073413
[15] Ding Y, Wang Y, Ni J, Shi L, Shi S and Tang W 2011 Physica B 406 2254
[16] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[17] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[18] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[19] Ruppert C, Aslan O B and Heinz T F 2014 Nano. Lett. 146 6231
[20] Qi J S, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403
[21] Zhang Q Y, Yang S Y A, Mi W B, Cheng Y C and Schwingenschlögl U 2015 Adv. Mater. 28 959
[22] Liu X, Du X and Huang G Q 2016 Solid State Commun. 248 43
[23] Kallatt S, Umesh G, Bhat N and Maiumdar K 2016 Nanoscale 8 15213
[24] Chen Q, Ouyang Y X, Yuan S J, Li R and Wang I L 2014 ACS Appl. Mater. Interfaces 6 16835
[25] Lee K, Yun W S and Lee J D 2015 Phys. Rev. B 91 125420
[26] Huang G Q, Xing Z W and Xing D Y 2016 Phys. Rev. B 93 104511
[27] Wang Z Y, Xia W and Huang G Q 2017 Physica C 543 52
[28] Pan S, Liu Q M, Ming F F, Wang K and Xiao X D 2011 J. Phys.: Condens. Matter 23 485001
[29] Du X, Wang Z Y and Huang G Q 2016 Mater. Res. Express 3 116302
[30] Li K, Feng X, Zhang W H, et al. 2013 Appl. Phys. Lett. 103 062601
[31] Xue M Q, Chen G F, Yang H X, Zhu Y H, Wang D M, He J B and Cao T B 2012 J. Am. Chem. Soc. 134 6536
[32] Zhang J J, Gao B and Dong S 2016 Phys. Rev. B 93 155430
[33] Huang G Q, Xing Z W and Xing D Y 2015 Appl. Phys. Lett. 106 113107
[34] Hamann D R 2013 Phys. Rev. B 88 085117
[35] Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3685
[37] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt Dand Marzari N 2008 Comput. Phys. Commun. 178 685
[38] Ponce S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
[39] Jiang T, Liu H R, Huang D, Zhang S, Li Y G, Gong X G, Shen Y R, Liu W T and Wu S W 2014 Nat. Nanotechnol. 9 825
[40] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[41] Grimvall G 1981 The Electron-Phonon Interaction in Metals (New York: North-Holland)
[42] Allen P B 1983 Solid State Phys. 37 1
[43] Allen P B and Mitrović B 1982 Solid State Phys. 37 1
[44] Margine E R anf Giustino F 2013 Phys. Rev. B 87 024505
[45] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Nature 418 758
[46] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Phys. Rev. B 66 020513
[47] Vidberg H J and Serene J W 1977 J. Low Temp. Phys. 29 179
[48] Leavens C R and Ritchie D S 1985 Solid Stata Commun. 53 137
[49] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[50] Johnston D C 2013 Supercond. Sci. Technol. 26 115011
[51] Hsu Y T, Vaezi A, Fischer M H and Kim E A 2017 Nat. Commun. 8 14985
[52] Mourik V, Zuo K, Frolov S M, et al. 2012 Science 336 1003
[53] Das A, Ronen Y, Most Y, et al. 2012 Nat. Phys. 8 887
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[13] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[14] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[15] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
No Suggested Reading articles found!