CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite |
Shiyue He(何诗悦)1,2,3, Ruoshui Liu(刘若水)3, Xujie Liu(刘煦婕)3, Xianping Ye(叶先平)3, Lichen Wang(王利晨)3,†, and Baogen Shen(沈保根)1,2,3,4,‡ |
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; 2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; 3 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Saturation magnetization, magneto-crystalline anisotropy field, and dielectric properties are closely related to microwave devices applied at different frequencies. For regulating the magnetic and dielectric properties of W-type barium ferrites, single-phase Ba$Me_{2}$Fe$_{16}$O$_{27}$ ($Me= {\rm Fe}$, Mn, Zn, Ni, Co) with different \textit{Me} ions were synthesized by the high-temperature solid-state method. The saturation magnetization ($M_{\rm s}$) range from 47.77emu/g to 95.34emu/g and the magnetic anisotropy field ($H_{\rm a}$) range from 10700.60Oe (1Oe=79.5775A$\cdot$m$^{-1}$) to 13739.57Oe, depending on the type of cation substitution in the hexagonal lattice. The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region, while they almost remain constant in the high-frequency region. The characteristics of easy regulation and preparation make it a potential candidate for use in microwave device applications.
|
Received: 17 February 2024
Revised: 03 April 2024
Accepted manuscript online: 03 April 2024
|
PACS:
|
68.55.Ln
|
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
87.64.kp
|
(Raman)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52088101), the Kunpeng Plan of Zhejiang Province, and Ningbo Top Talent Program. |
Corresponding Authors:
Lichen Wang, Baogen Shen
E-mail: wanglichen@nimte.ac.cn;shenbaogen@nimte.ac.cn
|
Cite this article:
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根) Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite 2024 Chin. Phys. B 33 066801
|
[1] Rathenau G, Smit J and Stuyts A 1952 Philips Technical Review 13 194 [2] Pullar R C 2012 Prog. Mater. Sci. 57 1191 [3] Ahmad M, Grössinger R, Kriegisch M, Kubel F and Rana M 2012 Curr. Appl. Phys. 12 1413 [4] Akhtar M N, Javed S, Ahmad M, Sulong A and Khan M A 2020 Ceramics International 46 7842 [5] Carvalheiras J, Novais R M, Mohseni F, Amaral J S, Seabra M P, Labrincha J A and Pullar R C 2020 Ceramics International 46 5757 [6] Moon K S and Kang Y M 2017 Ceramics International 43 14309 [7] Turchenko V, Bondyakov A, Trukhanov S, Fina I, Korovushkin V, Balasoiu M, Polosan S, Bozzo B, Lupu N and Trukhanov A 2023 J. Alloys Compd. 931 167433 [8] Özgür Ü, Alivov Y and Morkoç H 2009 J. Mater. Sci.: Mater. Electron. 20 789 [9] Iida K, Minachi Y, Masuzawa K, Kawakami M, Nishio H and Taguchi H 1999 J. Magn. Soc. Jpn. 23 1093 [10] Mørch M I, Ahlburg J V, Saura-Muzqúiz M, Eikeland A Z and Christensen M 2019 IUCrJ 6 492 [11] Zhang J 2019 J. Mater. Sci.: Mater. Electron. 30 8437 [12] Rehman A u, Shaukat S F, Akhtar M N and Ahmad M 2019 Ceramics International 45 24202 [13] Albanese G, Carbucicchio M and Asti G 1976 Appl. Phys. 11 81 [14] Mohammed J, Suleiman A B, Tchouank Tekou Carol T, Hafeez H Y, Sharma J, Maji P K, Kumar S G and Srivastava A K 2018 Chin. Phys. B 27 128104 [15] Ali H T, Ramzan M, Arshad M I, Morley N A, Abbas M H, Yusuf M, Rehman Ur, Mahmood K, Ali A, Amin N and Ajaz-un-Nabi M 2022 Chin. Phys. B 31 027502 [16] Yang X, Jin Q, Chen Z, Li Q and Liu B 2014 J. Magn. Magn. Mater. 367 64 [17] You J H and Yoo S I 2018 J. Alloys Compd. 763 459 [18] Sun M, Zheng J, Liang L, Sun K, Song Y and Zhao S 2015 J. Mater. Sci.: Mater. Electron. 26 9970 [19] Ahmad M, Ali I, Grössinger R, Kriegisch M, Kubel F and Rana M 2013 J. Alloys Compd. 579 57 [20] Attia S, El Ata A A and El Kony D 2004 J. Magn. Magn. Mater. 270 142 [21] Tang J, Li D, Li Y, Liu C and Zeng J 2021 J. Electron. Mater. 51 141 [22] Tahir W, Khan M A, Rasool R T, Dabagh S, Gulbadan S, Majeed A, Albalawi H, Bouzgarrou S and Mahmood K 2023 Physica B 659 414872 [23] Tahir W, Khan M A, Gulbadan S, Majeed A and Mahmood K 2021 Journal of Taibah University for Science 15 1196 [24] Iqbal A, Khan M A, Rasool R T, Gulbadan S, Algaradah M M, Ashraf G A, Alshahrani T, Abd-Rabboh H S M, Akhtar M N and Irfan M 2024 Ceramics International 50 4446 [25] Tahir W, Khan M A, Rasool R T, Gulbadan S, Majeed A and Nasar G 2023 J. Mater. Sci.: Mater. Electron. 34 1812 [26] Yar I M, Irfan M, Naheed F, Akhtar M N, Rasool R T, Ashraf G A, Gulbadan S and Khan M A 2024 Appl. Phys. A 130 87 [27] Groessinger R 1981 Phys. Status Solidi (a) 66 665 [28] Collomb A, Lambert-Andron B, Boucherle J and Samaras D 1986 Phys. Status Solidi (a) 96 385 [29] Collomb A, Wolfers P and Obradors X 1986 J. Magn. Magn. Mater. 62 57 [30] Akhtar M N, Javed S, Ahmad M, Sulong A B and Khan M A 2020 Ceramics International 46 7842 [31] Collomb A and Valletregi M 1987 Materials Research Bulletin 22 753 [32] Knudsen C G, Mørch M I and Christensen M 2023 Dalton Transactions 52 281 [33] Su Z J, Chen Y J, Hu B L, Sokolov A S, Bennett S, Burns L, Xing X and Harris V G 2013 J. Appl. Phys. 113 17B305 [34] Cao X, Guo X and Meng J 2018 Journal of Sol-Gel Science and Technology 85 149 [35] Polley K, Dey S K, Kumar A and Bera J 2024 J. Mater. Sci.: Mater. Electron. 35 269 [36] Li J and Sun X 2023 Materials 16 5897 [37] Iqbal M A, Tahir W, Murtaza Rai G, Noor N A, Ali S and Kubra K T 2012 Ceramics International 38 3757 [38] Ali A, Grössinger R, Imran M, Khan M A, Elahi A, Akhtar M N, Mustafa G, Khan M A, Ullah H, Murtaza G and Ahmad M 2017 J. Electron. Mater. 46 903 [39] Kharabe R G, Devan R S, Kanamadi C M and Chougule B K 2006 Smart Materials and Structures 15 N36 [40] Rehman A u, Shaukat S F, Haidyrah A S, Akhtar M N and Ahmad M 2021 Journal of Electroceramics 46 93 [41] Zhu J, Tseng K J and Foo C F 2000 IEEE Trans. Magn. 36 3408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|