Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 107301    DOI: 10.1088/1674-1056/21/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Renormalization of the chemical potential due to multiphonon effects at the surface of metals

Ma Lei (马磊)a b, Kang Guang-Zhen (康广振)a, Li Jun (李俊)a
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Department of Optics and Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China
Abstract  We study the relation between renormalization of the chemical potential due to multiphonon effects at the surface of Be(0001) and doping by solving the strong-coupling self-consistent equations of a two-dimensional (2D) electron-phonon interaction system. We present the quasiparticle dispersions and inverse lifetimes of a 2D electron system interacting with Einstein phonons under the different dopings (corresponding to chemical potentials). We find that the effect of electron-phonon interaction on electron structure is strongest at the half filling, but it has no effect on the chemical potential. However, the chemical potential shows distinct renormalization effects away from half filling due to the electron-phonon interaction.
Keywords:  kink structure      electron-phonon coupling      renormalization of chemical potential  
Received:  06 March 2012      Revised:  16 April 2012      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.38.-k (Polarons and electron-phonon interactions)  
  71.10.Ay (Fermi-liquid theory and other phenomenological models)  
  79.60.Bm (Clean metal, semiconductor, and insulator surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574063).
Corresponding Authors:  Ma Lei     E-mail:  leima_1017@163.com

Cite this article: 

Ma Lei (马磊), Kang Guang-Zhen (康广振), Li Jun (李俊) Renormalization of the chemical potential due to multiphonon effects at the surface of metals 2012 Chin. Phys. B 21 107301

[1] Lanzara A, Bogdanov P V, Zhou X J, Kellar S A, Feng D L, Lu E D, Yoshida T, Eisaki H, Fujimori A, Kishio K, Shimoyama J I, Noda T, Uchida S, Hussain Z and Shen Z X 2001 Nature 412 510
[2] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[3] Kliewer J, Berndt R, Chulkov E V, Silkin V M, Echenique P M and Crampin S 2000 Science 288 1399
[4] Eiguren A, Hellsing B, Reinert F, Nicolay G, Chulkov E V, Silkin V M, Hüfner S and Echenique P M 2002 Phys. Rev. Lett. 88 066805
[5] Hellsing B, Eiguren A and Chulkov E V 2002 J. Phys.: Condens. Matter 14 5959
[6] Hengsberger M M, Purdie D, Segovia P, Garnier M and Baer Y 1999 Phys. Rev. Lett. 83 592
[7] Valla T, Fedorov A V, Johnson P D, Wells B O, Hulbert S L, Li Q, Gu G D and Koshizuka N 1999 Science 285 2110
[8] Valla T, Fedorov A V, Johnson P D, Li Q, Gu G D and Koshizuka N 2000 Phys. Rev. Lett. 85 828
[9] Bogdanov P V, Lanzara A, Kellar S A, Zhou X J, Lu E D, Zheng W J, Gu G, Shimoyama J I, Kishio K, Ikeda H, Yoshizaki R, Hussain Z and Shen Z X 2000 Phys. Rev. Lett. 85 2581
[10] Kaminski A, Randeria M, Campuzano J C, Norman M R, Fretwell H, Mesot J, Sato T, Takahashi T and Kadowaki K 2001 Phys. Rev. Lett. 86 1070
[11] Ren J K, Ren Y F, Tian Y, Yu H F, Zheng D N, Zhao S P and Lin C T 2011 Chin. Phys. B 20 117401
[12] Li Z W, Ma X M, Pang H and Li F K 2012 Chin. Phys. B 21 037104
[13] Ma L, Huang A Q and Li J 2011 Chin. Phys. B 21 047601
[14] Tse W K and Das Sarma S 2007 Phys. Rev. Lett. 99 236802
[15] Calandra M and Mauri F 2007 Phys. Rev. B 76 205411
[16] Bianchi M, Rienks E D L, Lizzit S, Baraldi A, Balog R, Hornekær L and Hofmann P 2010 Phys. Rev. B 81 041403
[17] Engelsberg S and Schrieffer J R 1963 Phys. Rev. 131 993
[18] Tang D M, Li J and Gong C D 2003 Phys. Rev. B 67 235421
[19] Phillips J C 2005 Phys. Rev. B 71 184505
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[3] Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy
Shou-Peng Lyu(吕守鹏), Li Yu(俞理), Jian-Wei Huang(黄建伟), Cheng-Tian Lin(林成天), Qiang Gao(高强), Jing Liu(刘静), Guo-Dong Liu(刘国东), Lin Zhao(赵林), Jie Yuan(袁洁), Chuang-Tian Chen(陈创天), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2018, 27(8): 087503.
[4] The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory
Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹). Chin. Phys. B, 2018, 27(12): 126302.
[5] Superconductivity of bilayer phosphorene under interlayer compression
Gui-Qin Huang(黄桂芹) and Zhong-Wen Xing(邢钟文). Chin. Phys. B, 2016, 25(2): 027402.
[6] Electron-phonon coupling in cuprate and iron-based superconductors revealed by Raman scattering
Zhang An-Min (张安民), Zhang Qing-Ming (张清明). Chin. Phys. B, 2013, 22(8): 087103.
[7] Atomistic simulation of kink structure on edge dislocation in bcc iron
Chen Li-Qun(陈丽群), Wang Chong-Yu(王崇愚), and Yu Tao(于涛). Chin. Phys. B, 2008, 17(2): 662-668.
No Suggested Reading articles found!