Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027402    DOI: 10.1088/1674-1056/25/2/027402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Superconductivity of bilayer phosphorene under interlayer compression

Gui-Qin Huang(黄桂芹)1 and Zhong-Wen Xing(邢钟文)2
1. Department of Physics, Nanjing Normal University, Nanjing 210023, China;
2. National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  

According to first-principles calculations, it is our prediction that bilayer phosphorene (BLP) will become a quasi-two-dimensional superconductor under a certain degree of interlayer compression. A decreasing interlayer distance may realize the transition in the BLP from a semiconducting phase to a metallic phase. On the other hand, a severe vertical compression may make the BLP lattice become dynamically unstable. It is found that in the stable metallic phase of the BLP, interlayer phonon modes dominate the electron-phonon coupling λ. The obtained λ can be greater than 1 and the superconducting temperature Tc can be higher than 10 K.

Keywords:  bilayer phosphorene      superconductivity      electron-phonon coupling      semiconductor-metal transition  
Received:  14 September 2015      Revised:  29 October 2015      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Fj (Effects of pressure)  
  63.20.kd (Phonon-electron interactions)  
Fund: 

Project supported by the State Key Program for Basic Researches of China (Grant No. 2014CB921103) and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20141441 and BK2010012).

Corresponding Authors:  Zhong-Wen Xing     E-mail:  zwxing@nju.edu.cn

Cite this article: 

Gui-Qin Huang(黄桂芹) and Zhong-Wen Xing(邢钟文) Superconductivity of bilayer phosphorene under interlayer compression 2016 Chin. Phys. B 25 027402

[1] Novoselov K, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science 306 666
[2] Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103
[3] Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
[4] Feng B J, Li W B, Qiu J L, Cheng P, Chen L and Wu K H 2015 Chin. Phys. Lett. 32 037302
[5] Hultgren R, Gingrich N S and Warren B E 1935 J. Chem. Phys. 3 351
[6] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotech. 9 372
[7] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D and Ye P D 2014 ACS Nano 8 4033
[8] Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[9] Li L K, Ye G J, Tran Vy, Fei R X, Chen G R, Wang H C, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X H and Zhang Y B 2015 Nat. Nanotechnol. 10 608
[10] Gillgren N, Wickramaratne D, Shi Y M, Espiritu T, Yang J W, Hu J, Wei J, Liu X, Mao Z Q, Watanabe K, Taniguchi T, Bockrath M, Barlas Y, Lake R K and Lau C N 2015 2D Materials 2 011001
[11] Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
[12] Hu T, Han Y and Dong J M 2014 Nanotechnology 25 455703
[13] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[14] Huang G Q and Xing Z W 2015 J. Phys.: Condens. Matter 27 175006
[15] Tan X Y, Wang J H, Zhu Y Y, Zuo A Y and Jin K X 2014 Acta Phys. Sin. 63 207301 (in Chinese)
[16] Xing Y and Wang J 2015 Chin. Phys. B 24 117404
[17] Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401
[18] Kawamura H, Shirotani I and Tachikawa K 1984 Solid State Commun. 49 879
[19] Wittig J and Matthias B T 1968 Science 160 994
[20] Shao D F, Lu W J, Lv H Y and Sun Y P 2014 Europhys. Lett. 108 67004
[21] Huang G Q, Xing Z W and Xing D Y 2015 Appl. Phys. Lett. 106 113107
[22] Chang K J and Cohen Marvin L 1986 Phys. Rev. B 33 6177
[23] Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502; and http://www.quantum-espresso.org
[24] Chai J D and Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615
[25] Faleev S V, van Schilfgaarde M and Kotani T 2004 Phys. Rev. Lett. 93 126406
[26] Allen P B and Mitrovic B 1982 Solid State Physics (New York: Academic) 37 1
[27] Du Y L, Ouyang C Y, Shi S Q and Lei M S 2010 J. Appl. Phys. 107 093718
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[12] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[13] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[14] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[15] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
No Suggested Reading articles found!