|
|
Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2 |
Yonglai Liu(刘永来)1,2, Xitong Xu(许锡童)1,†, Miao He(何苗)1,2, Haitian Zhao(赵海天)1,2, Qingqi Zeng(曾庆祺)1, Xingyu Yang(杨星宇)1,2, Youming Zou(邹优鸣)1, Haifeng Du(杜海峰)1,2, and Zhe Qu(屈哲)1,2,‡ |
1 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL), HFIPS, CAS, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Due to the lack of inversion, mirror or other roto-inversion symmetries, chiral crystals possess a well-defined handedness which, when combined with time-reversal symmetry breaking from the application of magnetic fields, can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy. In this study, we investigate the nonreciprocal magneto-transport in microdevices of NbGe$_{2}$, a superconductor with structural chirality. A giant nonreciprocal signal from vortex motions is observed during the superconducting transition, with the ratio of nonreciprocal resistance to the normal resistance ${\gamma}$ reaching 6$\times10^{5}$~T$^{-1}$$\cdot$A$^{-1}$. Interestingly, the intensity can be adjusted and even sign-reversed by varying the current, the temperature, and the crystalline orientation. Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality.
|
Received: 31 January 2024
Revised: 08 March 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
74.25.F-
|
(Transport properties)
|
|
74.25.Wx
|
(Vortex pinning (includes mechanisms and flux creep))
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Key R & D Program of China (Grant No. 2022YFA1403603), the National Natural Science Foundation of China (Grant Nos. U2032213, 12104461, 12374129, and 12304156), and Chinese Academy of Sciences (Grant Nos. YSBR-084, and JZHKYPT-2021-08). |
Corresponding Authors:
Xitong Xu, Zhe Qu
E-mail: xuxitong@hmfl.ac.cn;zhequ@hmfl.ac.cn
|
Cite this article:
Yonglai Liu(刘永来), Xitong Xu(许锡童), Miao He(何苗), Haitian Zhao(赵海天), Qingqi Zeng(曾庆祺), Xingyu Yang(杨星宇), Youming Zou(邹优鸣), Haifeng Du(杜海峰), and Zhe Qu(屈哲) Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2 2024 Chin. Phys. B 33 057402
|
[1] Wagnière G H 2007 On chirality and the universal asymmetry: reflections on image and mirror image (John Wiley & Sons) [2] Chang G, Wieder B J, Schindler F, Sanchez D S, Belopolski I, Huang S M, Singh B, Wu D, Chang T R, Neupert T, Xu S Y, Lin H and Hasan M Z 2018 Nat. Mater. 17 978 [3] Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 206401 [4] Tokura Y and Nagaosa N 2018 Nat. Commun. 9 3740 [5] Atzori M, Train C, Hillard E A, Avarvari N and Rikken G L J A 2021 Chirality 33 844 [6] Cheong S W and Xu X 2022 npj Quantum Mater. 7 40 [7] Yu T, Luo Z and Bauer G E 2023 Phys. Rep. 1009 1 [8] Hoshino S, Wakatsuki R, Hamamoto K and Nagaosa N 2018 Phys. Rev. B 98 054510 [9] Fasman G D 2013 Circular dichroism and the conformational analysis of biomolecules (Springer Science & Business Media) [10] Bogdanov A and Hubert A 1994 J. Magn. Magn. Mater. 138 255 [11] Rikken G L J A, Fölling J and Wyder P 2001 Phys. Rev. Lett. 87 236602 [12] Yoda T, Yokoyama T and Murakami S 2015 Sci. Rep. 5 12024 [13] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M and Nojima T 2016 Nat. Phys. 12 144 [14] Wang N, Kaplan D, Zhang Z, Holder T, Cao N, Wang A, Zhou X, Zhou F, Jiang Z and Zhang C 2023 Nature 621 487 [15] Wang Y, Legg H F, Bömerich T, Park J, Biesenkamp S, Taskin A A, Braden M, Rosch A and Ando Y 2022 Phys. Rev. Lett. 128 176602 [16] Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S, Kaneko Y, Tokura Y, Nagaosa N and Iwasa Y 2017 Nat. Phys. 13 578 [17] Morimoto T and Nagaosa N 2016 Phys. Rev. Lett. 117 146603 [18] Yoshimi R, Kawamura M, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2022 Phys. Rev. B 106 115202 [19] Wu Y, Wang Q, Zhou X, Wang J, Dong P, He J, Ding Y, Teng B, Zhang Y, Li Y, Zhao C, Zhang H, Liu J, Qi Y, Watanabe K, Taniguchi T and Li J 2022 npj Quantum Mater. 7 105 [20] Daido A, Ikeda Y and Yanase Y 2022 Phys. Rev. Lett. 128 037001 [21] Wakatsuki R, Saito Y, Hoshino S, Itahashi Y M, Ideue T, Ezawa M, Iwasa Y and Nagaosa N 2017 Sci. Adv. 3 e1602390 [22] Itahashi Y M, Ideue T, Saito Y, Shimizu S, Ouchi T, Nojima T and Iwasa Y 2020 Sci. Adv. 6 eaay9120 [23] Itahashi Y M, Saito Y, Ideue T, Nojima T and Iwasa Y 2020 Phys. Rev. Res. 2 023127 [24] Zhang E, Xu X, Zou Y C, Ai L, Dong X, Huang C, Leng P, Liu S, Zhang Y, Jia Z, Peng X, Zhao M, Yang Y, Li Z, Guo H, Haigh S J, Nagaosa N, Shen J and Xiu F 2020 Nat. Commun. 11 5634 [25] Ideue T, Koshikawa S, Namiki H, Sasagawa T and Iwasa Y 2020 Phys. Rev. Res. 2 042046 [26] Wakatsuki R and Nagaosa N 2018 Phys. Rev. Lett. 121 026601 [27] Remeika J P, Cooper A S, Fisk Z and Johnston D C 1978 J. LessCommon Met. 62 211 [28] Lv B, Li M, Chen J, Yang Y, Wu S, Qiao L, Guan F, Xing H, Tao Q, Cao G H and Xu Z A 2020 Phys. Rev. B 102 064507 [29] Yang H Y, Yao X, Plisson V, Mozaffari S, Scheifers J P, Savvidou A F, Choi E S, McCandless G T, Padlewski M F, Putzke C, Moll P J W, Chan J Y, Balicas L, Burch K S and Tafti F 2021 Nat. Commun. 12 5292 [30] Sato Y J, Nakamura A, Nishinakayama R, Okazaki R, Harima H and Aoki D 2023 Phys. Rev. B 108 235115 [31] Pop F, Auban-Senzier P, Canadell E, Rikken G L J A and Avarvari N 2014 Nat. Commun. 5 3757 [32] Rikken G L J A and Wyder P 2005 Phys. Rev. Lett. 94 016601 [33] Emmanouilidou E, Mardanya S, Xing J, Reddy P V S, Agarwal A, Chang T R and Ni N 2020 Phys. Rev. B 102 235144 [34] Du W S, Chen W, Zhou Y, Zhou T, Liu G, Zhang Z, Miao Z, Jia H, Liu S and Zhao Y 2023 arXiv: 2303.09052 [35] Wakamura T, Hashisaka M, Hoshino S, Bard M, Okazaki S, Sasagawa T, Taniguchi T, Watanabe K, Muraki K and Kumada N 2024 Phys. Rev. Res. 6 013132 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|