CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures |
Yibing Zhao(赵逸冰)1,2,†, Xiaoxiao Fang(方晓筱)1,2,†, Zhirui Wang(王志睿)1,2, Miao Cheng(程淼)1,2, Yongjia Tan(谭永嘉)1,2, Dongxiong Wei(韦东雄)1,2, Changjun Jiang(蒋长军)1,2, and Jinli Yao(幺金丽)1,2,‡ |
1 Key Laboratory for Magnetism and Magnetic Materials(Ministry of Education), Lanzhou University, Lanzhou 730000, China; 2 Key Laboratory of Special Function Materials and Structure Design(Ministry of Education), Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The half-metallic Heusler alloy Co$_{2}$FeSi is an ideal material in spintronic devices due to its higher spin polarization, higher Curie temperature and lower damping parameters. In this work, the dynamic magnetism of Co$_{2}$FeSi is modulated by electric field and it is demonstrated that the charge-spin conversion efficiency $\xi $ is continuous and controllable by the electric field. We further find an extremely high $\xi $ in ferromagnetic/ferroelectric (FM/FE) heterostructures, which could be ascribed to interfacial effect in FM/FE interface. Moreover, we investigate that the charge-spin conversion efficiency varies with the electric field in a butterfly-like behavior, which accords with the $S$-$E$ curve of Pb(Mg$_{1/3}$Nb$_{2/3})$O$_{3}$-Pb$_{0.7}$Ti$_{0.3}$O$_{3}$(PMN-PT) and could be attributed to strain effect. The modulation of charge-spin conversion efficiency in FM/FE heterostructures via electric field presents a profound potential for next-generation spintronic devices and applications of current-induced magnetization switching.
|
Received: 24 July 2022
Revised: 12 January 2023
Accepted manuscript online: 13 January 2023
|
PACS:
|
67.30.er
|
(Magnetic properties, NMR)
|
|
67.80.dk
|
(Magnetic properties, phases, and NMR)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974149) and the Natural Science Foundation of Gansu Province (Grant No. 21JR7RA472). |
Corresponding Authors:
Jinli Yao
E-mail: yaojl@lzu.edu.cn
|
Cite this article:
Yibing Zhao(赵逸冰), Xiaoxiao Fang(方晓筱), Zhirui Wang(王志睿), Miao Cheng(程淼), Yongjia Tan(谭永嘉), Dongxiong Wei(韦东雄), Changjun Jiang(蒋长军), and Jinli Yao(幺金丽) Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures 2023 Chin. Phys. B 32 056701
|
[1] Manchon A, Železny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004 [2] Hirsch J E 1999 Phys. Rev. Lett. 83 1834 [3] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K and Wang K L 2016 Nano Lett. 16 7514 [4] Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107 [5] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240 [6] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587 [7] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [8] Schulz T, Lee K, Krüger B, Conte R Lo, Karnad G V, Garcia K, Vila L, Ocker B, Ravelosona D and Kläui M 2017 Phys. Rev. B 95 224409 [9] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871 [10] Brataas A, Tserkovnyak Y, Bauer G E W and Halperin B I 2002 Phys. Rev. B 66 060404 [11] Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson R M, Sinha J, Hindmarch A T, Barman A and Atkinson D 2016 Phys. Rev. B 93 054402 [12] Kumar A, Akansel S, Stopfel H, Fazlali M, Akerman J, Brucas R and Svedlindh P 2017 Phys. Rev. B 95 064406 [13] Barati E and Cinal M 2017 Phys. Rev. B 95 134440 [14] Yang H, Li Y and Bailey W E 2016 Appl. Phys. Lett. 108 242404 [15] Jiang C, Wang F, Dong C, Zhou C, Wu L and Xue D 2016 Appl. Phys. Lett. 108 032401 [16] Dong C, Guo D, Wu L, Wang F, Jiang C, Jia C and Xue D 2014 Appl. Phys. Lett. 104 062403 [17] Wu L, Zhang C, Dong C, Jia C, Jiang C and Xue D 2015 Appl. Phys. Lett. 107 122905 [18] Lv W, Jia Z, Wang B, Lu Y, Luo X, Zhang B, Zeng Z and Liu Z 2018 ACS Appl. Mater. Interfaces 10 2843 [19] Filianina M, Hanke J P, Lee K, Han D S, Jaiswal S, Rajan A, Jakob G, Mokrousov Y and Klaeui M 2020 Phys. Rev. Lett. 124 217701 [20] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712 [21] Trudel S, Gaier O, Hamrle J and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001 [22] De Groot R A, Mueller F M, Van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 [23] Oogane M, Yilgin R, Shinano M, Yakata S, Sakuraba Y, Ando Y and Miyazaki T 2007 J. Appl. Phys. 101 09J501 [24] Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107 [25] Wang Y, Ramaswamy R and Yang H 2018 J. Phys. D: Appl. Phys. 51 273002 [26] Yang W L, Wei J W, Wan C H, Xing Y W, Yan Z R, Wang X, Fang C, Guo C Y, Yu G Q and Han X F 2020 Phys. Rev. B 101 064412 [27] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601 [28] Nan T, Emori S, Boone C T, Wang X, Oxholm T M, Jones J G, Howe B M, Brown G J and Sun N X 2015 Phys. Rev. B 91 214416 [29] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [30] Pai C F, Liu L, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Appl. Phys. Lett. 101 122404 [31] Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D, Yu J, Venkatesan T and Yang H 2017 Nano Lett. 17 7659 [32] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S and Yang H 2015 Phys. Rev. Lett. 114 257202 [33] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449 [34] Yu D, Luo S, Li Y, Koval V and Jia C 2019 Phys. Rev. B 100 104410 [35] Zhang C, Wang F, Dong C, Gao C, Jia C, Jiang C and Xue D 2015 Nanoscale 7 4187 [36] Zhang S, Zhao Y G, Li P S, Yang J, Rizwan S, Zhang J, Seidel J, Qu T, Yang Y J, Luo Z L, He Q, Zou T, Chen Q P, Wang J W, Yang L F, Sun Y, Wu Y Z, Xiao X, Jin X F, Huang J, Gao C, Han X F and Ramesh R 2012 Phys. Rev. Lett. 108 137203 [37] Jiang C, Zhang C, Dong C, Guo D and Xue D 2015 Appl. Phys. Lett. 106 122406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|