CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Infrared optical absorption of Fröhlich polarons in metal halide perovskites |
Yu Cui(崔钰), Xiao-Yi Liu(刘晓逸), Xu-Fei Ma(马旭菲), Jia-Pei Deng(邓加培), Yi-Yan Liu(刘怡言), and Zi-Wu Wang(王子武)† |
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, China |
|
|
Abstract The formation of Fröhlich polarons in metal halide perovskites, arising from the charge carrier-longitudinal optical (LO) phonon coupling, has been proposed to explain their exceptional properties, but the effective identification of polarons in these materials is still a challenging task. Herein, we theoretically present the infrared optical absorption of Fröhlich polarons based on the Huang-Rhys model. We find that multiphonon overtones appear as the energy of the incident photons matches the multiple LO phonons, wherein the average phonon number of a polaron can be directly evaluated by the order of the strongest overtone. These multiphonon structures sensitively depend on the scale of electronic distribution in the ground state and the dimensionality of the perovskite materials, revealing the effective modulation of competing processes between polaron formation and carrier cooling. Moreover, the order of the strongest overtone shifts to higher ones with temperature, providing a potential proof that the carrier mobility is affected by LO phonon scattering. The present model not only suggests a direct way to verify Fröhlich polarons but also enriches our understanding of the properties of polarons in metal halide perovskites.
|
Received: 24 October 2022
Revised: 24 November 2022
Accepted manuscript online: 02 December 2022
|
PACS:
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674241 and 12174283). |
Corresponding Authors:
Zi-Wu Wang
E-mail: wangziwu@tju.edu.cn
|
Cite this article:
Yu Cui(崔钰), Xiao-Yi Liu(刘晓逸), Xu-Fei Ma(马旭菲), Jia-Pei Deng(邓加培), Yi-Yan Liu(刘怡言), and Zi-Wu Wang(王子武) Infrared optical absorption of Fröhlich polarons in metal halide perovskites 2023 Chin. Phys. B 32 097102
|
[1] Mishchenko A S, Prokof'ev N V, Sakamoto A and Svistunov B V 2000 Phys. Rev. B 62 6317 [2] Devreese J T 2007 J. Phys.: Condens. Matter 19 255201 [3] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501 [4] Miyata K, Atallah T L and Zhu X Y 2017 Sci. Adv. 3 e1701469 [5] Lan Y, Dringoli B J, Valverde-Chacuteávez D A, Ponseca Jr C S, Sutton M, He Y, Kanatzidis M G and Cooke D G 2019 Sci. Adv. 5 eaaw5558 [6] Mahata A, Meggiolaro D and Angelis F D 2019 J. Phys. Chem. Lett. 10 1790 [7] Ghosh D, Welch E, Neukirch A J, Zakhidov A and Tretiak S 2020 J. Phys. Chem. Lett. 11 3271 [8] Miyata K, Meggiolaro D, Trinh M T, Joshi P P, Mosconi E, Jones S C, Angelis F D and Zhu X Y 2017 Sci. Adv. 3 e1701217 [9] Cinquanta E, Meggiolaro D, Motti S G, Gandini M, Alcocer M J P, Akkerman Q A, Vozzi C, Manna L, Angelis F D, Petrozza A and Stagira S 2019 Phys. Rev. Lett. 122 166601 [10] Evans T J S, Miyata K, Joshi P P, Maehrlein S, Liu F and Zhu X Y 2018 J. Phys. Chem. C 122 13724 [11] Park M, Neukirch A J, Reyes-Lillo S E, Lai M, Ellis S R, Dietze D, Neaton J B, Yang P, Tretiak S and Mathies R A 2018 Nat. Commun. 9 2525 [12] Puppin M, Polishchuk S, Colonna N, Crepaldi A, Dirin D N, Nazarenko O, De Gennaro R, Gatti G, Roth S, Barillot T, Poletto L, Xian R P, Rettig L, Wolf M, Ernstorfer R, Kovalenko M V, Marzari N, Grioni M and Chergui M 2020 Phys. Rev. Lett. 124 206402 [13] Schilcher M J, Robinson P J, Abramovitch D J, Tan L Z, Rappe A M, Reichman D R and Egger D A 2021 ACS Energy Lett. 6 2162 [14] Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu X Y and Podzorov V 2016 Nat. Commun. 7 12253 [15] Neukirch A J, Nie W, Blancon J, Appavoo K, Tsai H, Sfeir M Y, Katan C, Pedesseau L, Even J, Crochet J J, Gupta G, Mohite A D and Tretiak S 2016 Nano Lett. 16 3809 [16] Meggiolaro D, Ambrosio F, Mosconi E, Mahata A and Angelis F D 2019 Adv. Energy Mater. 10 1902748 [17] Husanu M A, Vistoli L, Verdi C, Sander A, Garcia V, Rault J, Bisti F, Lev L L, Schmitt T, Giustino F, Mishchenko A S, Bibes M and Strocov V N 2020 Commun. Phys. 3 62 [18] Huang K and Rhys A 1950 Proc. R. Soc. A 204 406 [19] Huang K 1981 Contemp. Phys 22 599 [20] Xu S J 2019 Acta Phys. Sin. 68 2019 (in Chinese) [21] Wang Z W, Sun Y, Cui Y, Xiao Y, Deng J P, Xiong W and Li Z Q 2021 J. Phys.: Condens. Matter 33 145702 [22] Kartheuser E and Evrard R 1980 Phys. Rev. B 21 648 [23] Matsuura M and Büttner H 1980 Phys. Rev. B 21 679 [24] Cheng Z 1999 Phys. Rev. B 60 15747 [25] Lin S H, Chang C H, Liang K K, Chang R, Shiu Y J, Zhang J M, Yang T S, Hayashi M and Hsu F C 2002 Ultrafast Dynamics and Spectroscopy of Bacterial Photosynthetic Reaction Centers (John Wiley and Sons, Inc.) pp. 8–9 [26] Devreese J T 2016 arXiv:1012.4576v6 [hep-ph] [27] Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A and Angelis F D 2014 J. Phys. Chem. Lett. 5 279 [28] Brivio F, Frost J M, Skelton J M, Jackson A J, Weber O J, Weller M T, Goni A R, Leguy A M A, Barnes P R F and Walsh A 2015 Phys. Rev. B 92 144308 [29] Iaru C M, Geuchies J J, Koenraad P M, Vanmaekelbergh D and Silov A Y 2017 ACS Nano 11 11024 [30] Iaru C M, Brodu A, van Hoof N J J, ter Huurne S E T, Buhot J, Montanarella F, Buhbut S, Christianen P C M, Vanmaekelbergh D, Donega C de M, Rivas J G, Koenraad P M and Silov A Y 2021 Nat. Commun. 12 5844 [31] Emin D 1999 Polaron (Cambridge University Press) p. 21 [32] Cui Y, Liu X Y, Ji S Y, Sun Y, Deng J P, Ma X F, Li Z Q and Wang Z W 2021 J. Phys. Chem. Lett. 12 11182 [33] Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B and Herz L M 2016 Nat. Commun. 7 11755 [34] Sendner M, Nayak P K, Egger D A, Beck S, Müller C C, Epding B, Kowalsky W, Kronik L, Snaith H J, Pucci A and Lovrinčć R 2016 Mater. Horiz. 3 613 [35] Wolf C, Kim J S and Lee T W 2017 ACS Appl. Mater. Interfaces 9 10344 [36] Zheng F and Wang L W 2019 Energy Environ. Sci. 12 1219 [37] Yin J, Li H, Cortecchia D, Soci C and Brédas J 2017 ACS Energy Lett. 2 417 [38] Li S, Luo J, Liu J and Tang J 2019 J. Phys. Chem. Lett. 10 1999 [39] Li J, Wang J, Ma J, Shen H, Li L, Duan X and Li D 2019 Nat. Commun. 10 806 [40] Kandada A R S and Silva C 2020 J. Phys. Chem. Lett. 11 3173 [41] Ivanovska T, Dionigi C, Mosconi E, Angelis F D, Liscio F, Morandi V and Ruani G 2017 J. Phys. Chem. Lett. 8 3081 [42] Buizza L R V and Herz L M 2021 Adv. Mater. 33 2007057 [43] Shi L and Wang L W 2012 Phys. Rev. Lett. 109 245501 [44] Shi L, Xu K and Wang L W 2015 Phys. Rev. B 91 205315 [45] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S and Wang L W 2020 Sci. China Phys. Mech. Astron. 63 277312 [46] Kim K H, Jung J H and Noh T W 1998 Phys. Rev. Lett. 81 1517 [47] Wang Z W, Xiao Y, Deng J P, Cui Y and Li Z Q 2019 Phys. Rev. B 100 125308 [48] Cui Y, Xiao Y, Sun Y, Deng J P, Li Z Q and Wang Z W 2020 J. Appl. Phys. 128 204302 [49] Bretschneider S A, Ivanov I, Wang H I, Miyata K, Zhu X and Bonn M 2018 Adv. Mater. 30 1707312 [50] Joshi P P, Maehrlein S F and Zhu X 2019 Adv. Mater. 31 1803054 [51] Kaur G, Babu K J, Ghorai N, Goswami T, Maiti S and Ghosh H N 2019 J. Phys. Chem. Lett. 10 5302 [52] Zhu X Y and Podzorov V 2015 J. Phys. Chem. Lett. 6 4758 [53] Thongnum A, Pingaew R and Pinsook U 2021 Phys. Chem. Chem. Phys. 23 27320 [54] Frost J M 2017 Phys. Rev. B 96 195202 [55] Motta C and Sanvito S 2018 J. Phys. Chem. C 122 1361 [56] Thongum A and Pinsook U 2020 Nanoscale 12 14112 [57] Brenner T M, Egger D A, Rappe A M, Kronik L, Hodes G and Cahen D 2015 J. Phys. Chem. Lett. 6 4754 [58] Whitfield P S, Herron N, Guise W E, Page K, Cheng Y Q, Milas I and Crawford M K 2016 Sci. Rep. 6 35685 [59] Liu L, Zhao R, Xiao C, Zhang F, Pevere F, Shi K, Huang H, Zhong H and Sychugov I 2019 J. Phys. Chem. Lett. 10 5451 [60] Keshavarz M, Ottesen M, Wiedmann S, Wharmby M, Küchler R, Yuan H, Debroye E, Steele J A, Martens J, Hussey N E, Bremholm M, Roeffaers M B J and Hofkens J 2019 Adv. Mater. 31 1900521 [61] Chen J, Messing M E, Zheng K and Pullerits T 2019 J. Am. Chem. Soc. 141 3532 [62] Lee J W, Tan S, Seok S, Yang Y and Park N G 2022 Science 375 eabj1186 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|