Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097102    DOI: 10.1088/1674-1056/aca7f0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Infrared optical absorption of Fröhlich polarons in metal halide perovskites

Yu Cui(崔钰), Xiao-Yi Liu(刘晓逸), Xu-Fei Ma(马旭菲), Jia-Pei Deng(邓加培), Yi-Yan Liu(刘怡言), and Zi-Wu Wang(王子武)
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, China
Abstract  The formation of Fröhlich polarons in metal halide perovskites, arising from the charge carrier-longitudinal optical (LO) phonon coupling, has been proposed to explain their exceptional properties, but the effective identification of polarons in these materials is still a challenging task. Herein, we theoretically present the infrared optical absorption of Fröhlich polarons based on the Huang-Rhys model. We find that multiphonon overtones appear as the energy of the incident photons matches the multiple LO phonons, wherein the average phonon number of a polaron can be directly evaluated by the order of the strongest overtone. These multiphonon structures sensitively depend on the scale of electronic distribution in the ground state and the dimensionality of the perovskite materials, revealing the effective modulation of competing processes between polaron formation and carrier cooling. Moreover, the order of the strongest overtone shifts to higher ones with temperature, providing a potential proof that the carrier mobility is affected by LO phonon scattering. The present model not only suggests a direct way to verify Fröhlich polarons but also enriches our understanding of the properties of polarons in metal halide perovskites.
Keywords:  metal halide perovskites      polaron      Huang-Rhys factor  
Received:  24 October 2022      Revised:  24 November 2022      Accepted manuscript online:  02 December 2022
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674241 and 12174283).
Corresponding Authors:  Zi-Wu Wang     E-mail:  wangziwu@tju.edu.cn

Cite this article: 

Yu Cui(崔钰), Xiao-Yi Liu(刘晓逸), Xu-Fei Ma(马旭菲), Jia-Pei Deng(邓加培), Yi-Yan Liu(刘怡言), and Zi-Wu Wang(王子武) Infrared optical absorption of Fröhlich polarons in metal halide perovskites 2023 Chin. Phys. B 32 097102

[1] Mishchenko A S, Prokof'ev N V, Sakamoto A and Svistunov B V 2000 Phys. Rev. B 62 6317
[2] Devreese J T 2007 J. Phys.: Condens. Matter 19 255201
[3] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501
[4] Miyata K, Atallah T L and Zhu X Y 2017 Sci. Adv. 3 e1701469
[5] Lan Y, Dringoli B J, Valverde-Chacuteávez D A, Ponseca Jr C S, Sutton M, He Y, Kanatzidis M G and Cooke D G 2019 Sci. Adv. 5 eaaw5558
[6] Mahata A, Meggiolaro D and Angelis F D 2019 J. Phys. Chem. Lett. 10 1790
[7] Ghosh D, Welch E, Neukirch A J, Zakhidov A and Tretiak S 2020 J. Phys. Chem. Lett. 11 3271
[8] Miyata K, Meggiolaro D, Trinh M T, Joshi P P, Mosconi E, Jones S C, Angelis F D and Zhu X Y 2017 Sci. Adv. 3 e1701217
[9] Cinquanta E, Meggiolaro D, Motti S G, Gandini M, Alcocer M J P, Akkerman Q A, Vozzi C, Manna L, Angelis F D, Petrozza A and Stagira S 2019 Phys. Rev. Lett. 122 166601
[10] Evans T J S, Miyata K, Joshi P P, Maehrlein S, Liu F and Zhu X Y 2018 J. Phys. Chem. C 122 13724
[11] Park M, Neukirch A J, Reyes-Lillo S E, Lai M, Ellis S R, Dietze D, Neaton J B, Yang P, Tretiak S and Mathies R A 2018 Nat. Commun. 9 2525
[12] Puppin M, Polishchuk S, Colonna N, Crepaldi A, Dirin D N, Nazarenko O, De Gennaro R, Gatti G, Roth S, Barillot T, Poletto L, Xian R P, Rettig L, Wolf M, Ernstorfer R, Kovalenko M V, Marzari N, Grioni M and Chergui M 2020 Phys. Rev. Lett. 124 206402
[13] Schilcher M J, Robinson P J, Abramovitch D J, Tan L Z, Rappe A M, Reichman D R and Egger D A 2021 ACS Energy Lett. 6 2162
[14] Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu X Y and Podzorov V 2016 Nat. Commun. 7 12253
[15] Neukirch A J, Nie W, Blancon J, Appavoo K, Tsai H, Sfeir M Y, Katan C, Pedesseau L, Even J, Crochet J J, Gupta G, Mohite A D and Tretiak S 2016 Nano Lett. 16 3809
[16] Meggiolaro D, Ambrosio F, Mosconi E, Mahata A and Angelis F D 2019 Adv. Energy Mater. 10 1902748
[17] Husanu M A, Vistoli L, Verdi C, Sander A, Garcia V, Rault J, Bisti F, Lev L L, Schmitt T, Giustino F, Mishchenko A S, Bibes M and Strocov V N 2020 Commun. Phys. 3 62
[18] Huang K and Rhys A 1950 Proc. R. Soc. A 204 406
[19] Huang K 1981 Contemp. Phys 22 599
[20] Xu S J 2019 Acta Phys. Sin. 68 2019 (in Chinese)
[21] Wang Z W, Sun Y, Cui Y, Xiao Y, Deng J P, Xiong W and Li Z Q 2021 J. Phys.: Condens. Matter 33 145702
[22] Kartheuser E and Evrard R 1980 Phys. Rev. B 21 648
[23] Matsuura M and Büttner H 1980 Phys. Rev. B 21 679
[24] Cheng Z 1999 Phys. Rev. B 60 15747
[25] Lin S H, Chang C H, Liang K K, Chang R, Shiu Y J, Zhang J M, Yang T S, Hayashi M and Hsu F C 2002 Ultrafast Dynamics and Spectroscopy of Bacterial Photosynthetic Reaction Centers (John Wiley and Sons, Inc.) pp. 8–9
[26] Devreese J T 2016 arXiv:1012.4576v6 [hep-ph]
[27] Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A and Angelis F D 2014 J. Phys. Chem. Lett. 5 279
[28] Brivio F, Frost J M, Skelton J M, Jackson A J, Weber O J, Weller M T, Goni A R, Leguy A M A, Barnes P R F and Walsh A 2015 Phys. Rev. B 92 144308
[29] Iaru C M, Geuchies J J, Koenraad P M, Vanmaekelbergh D and Silov A Y 2017 ACS Nano 11 11024
[30] Iaru C M, Brodu A, van Hoof N J J, ter Huurne S E T, Buhot J, Montanarella F, Buhbut S, Christianen P C M, Vanmaekelbergh D, Donega C de M, Rivas J G, Koenraad P M and Silov A Y 2021 Nat. Commun. 12 5844
[31] Emin D 1999 Polaron (Cambridge University Press) p. 21
[32] Cui Y, Liu X Y, Ji S Y, Sun Y, Deng J P, Ma X F, Li Z Q and Wang Z W 2021 J. Phys. Chem. Lett. 12 11182
[33] Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B and Herz L M 2016 Nat. Commun. 7 11755
[34] Sendner M, Nayak P K, Egger D A, Beck S, Müller C C, Epding B, Kowalsky W, Kronik L, Snaith H J, Pucci A and Lovrinčć R 2016 Mater. Horiz. 3 613
[35] Wolf C, Kim J S and Lee T W 2017 ACS Appl. Mater. Interfaces 9 10344
[36] Zheng F and Wang L W 2019 Energy Environ. Sci. 12 1219
[37] Yin J, Li H, Cortecchia D, Soci C and Brédas J 2017 ACS Energy Lett. 2 417
[38] Li S, Luo J, Liu J and Tang J 2019 J. Phys. Chem. Lett. 10 1999
[39] Li J, Wang J, Ma J, Shen H, Li L, Duan X and Li D 2019 Nat. Commun. 10 806
[40] Kandada A R S and Silva C 2020 J. Phys. Chem. Lett. 11 3173
[41] Ivanovska T, Dionigi C, Mosconi E, Angelis F D, Liscio F, Morandi V and Ruani G 2017 J. Phys. Chem. Lett. 8 3081
[42] Buizza L R V and Herz L M 2021 Adv. Mater. 33 2007057
[43] Shi L and Wang L W 2012 Phys. Rev. Lett. 109 245501
[44] Shi L, Xu K and Wang L W 2015 Phys. Rev. B 91 205315
[45] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S and Wang L W 2020 Sci. China Phys. Mech. Astron. 63 277312
[46] Kim K H, Jung J H and Noh T W 1998 Phys. Rev. Lett. 81 1517
[47] Wang Z W, Xiao Y, Deng J P, Cui Y and Li Z Q 2019 Phys. Rev. B 100 125308
[48] Cui Y, Xiao Y, Sun Y, Deng J P, Li Z Q and Wang Z W 2020 J. Appl. Phys. 128 204302
[49] Bretschneider S A, Ivanov I, Wang H I, Miyata K, Zhu X and Bonn M 2018 Adv. Mater. 30 1707312
[50] Joshi P P, Maehrlein S F and Zhu X 2019 Adv. Mater. 31 1803054
[51] Kaur G, Babu K J, Ghorai N, Goswami T, Maiti S and Ghosh H N 2019 J. Phys. Chem. Lett. 10 5302
[52] Zhu X Y and Podzorov V 2015 J. Phys. Chem. Lett. 6 4758
[53] Thongnum A, Pingaew R and Pinsook U 2021 Phys. Chem. Chem. Phys. 23 27320
[54] Frost J M 2017 Phys. Rev. B 96 195202
[55] Motta C and Sanvito S 2018 J. Phys. Chem. C 122 1361
[56] Thongum A and Pinsook U 2020 Nanoscale 12 14112
[57] Brenner T M, Egger D A, Rappe A M, Kronik L, Hodes G and Cahen D 2015 J. Phys. Chem. Lett. 6 4754
[58] Whitfield P S, Herron N, Guise W E, Page K, Cheng Y Q, Milas I and Crawford M K 2016 Sci. Rep. 6 35685
[59] Liu L, Zhao R, Xiao C, Zhang F, Pevere F, Shi K, Huang H, Zhong H and Sychugov I 2019 J. Phys. Chem. Lett. 10 5451
[60] Keshavarz M, Ottesen M, Wiedmann S, Wharmby M, Küchler R, Yuan H, Debroye E, Steele J A, Martens J, Hussey N E, Bremholm M, Roeffaers M B J and Hofkens J 2019 Adv. Mater. 31 1900521
[61] Chen J, Messing M E, Zheng K and Pullerits T 2019 J. Am. Chem. Soc. 141 3532
[62] Lee J W, Tan S, Seok S, Yang Y and Park N G 2022 Science 375 eabj1186
[1] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[2] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[3] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[4] Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰). Chin. Phys. B, 2021, 30(11): 110304.
[5] Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(10): 106702.
[6] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[7] Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2017, 26(9): 097103.
[8] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[9] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
[10] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[11] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[12] Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot
M Tiotsop, A J Fotue, S C Kenfack, N Issofa, H Fotsin, L C Fai. Chin. Phys. B, 2016, 25(4): 048401.
[13] Crossover of large to small radius polaron in ionic crystals
M I Umo. Chin. Phys. B, 2016, 25(11): 117104.
[14] Polaron effect on the optical rectification in spherical quantum dots with electric field
Zhen-Yu Feng(冯振宇), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2016, 25(10): 107804.
[15] Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries
Musheng Wu(吴木生), Bo Xu(徐波), Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(1): 018206.
No Suggested Reading articles found!