Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067302    DOI: 10.1088/1674-1056/ac921b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer

Guo-Dong Yan(严国栋)1, Zhen-Hua Zhang(张振华)1, Heng Guo(郭衡)1, Jin-Ping Chen(陈金平)1, Qing-Song Jiang(蒋青松)2, Qian-Nan Cui(崔乾楠)1, Zeng-Liang Shi(石增良)1, and Chun-Xiang Xu(徐春祥)1,†
1 State Key Laboratory of Bioelectronics, School of Physics, Southeast University, Nanjing 210096, China;
2 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223001, China
Abstract  Localized surface plasmon resonance (LSPR) has caused extensive concern and achieved widespread applications in optoelectronics. However, the weak coupling of plasmons and excitons in a nanometal/semiconductor system remains to be investigated via energy transfer. Herein, bandgap tunable perovskite films were synthesized to adjust the emission peaks, for further coupling with stable localized surface plasmons from gold nanoparticles. The degree of mismatch, using steady-state and transient photoluminescence (PL), was investigated systematically in two different cases of gold nanoparticles that were in direct contacting and insulated. The results demonstrated the process of tuning emission coupled to LSPR via wavelength-dependent photoluminescence intensity in the samples with an insulating spacer. In the direct contact case, the decreased radiative decay rate involves rapid plasmon resonance energy transfer to the perovskite semiconductor and non-radiative energy transfer to metal nanoparticles in the near-field range.
Keywords:  plasmons      photoluminescence      tunable emission      perovskite  
Received:  11 July 2022      Revised:  15 August 2022      Accepted manuscript online:  15 September 2022
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.55.-m (Photoluminescence, properties and materials)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0700503 and 2018YFA0209101) and the National Natural Science Foundation of China (Grant Nos. 61821002, 11734005, 62075041, and 61704024).
Corresponding Authors:  Chun-Xiang Xu     E-mail:  xcxseu@seu.edu.cn

Cite this article: 

Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥) Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer 2023 Chin. Phys. B 32 067302

[1] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[2] Agrawal A, Cho S H, Zandi O, Ghosh S, Johns R W and Milliron D J 2018 Chem. Rev. 118 3121
[3] Mu X, Hu L, Cheng Y, Fang Y and Sun M 2021 Nanoscale 13 581
[4] Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J and Duan H G 2019 Acta Phys. Sin. 68 247301 (in Chinese)
[5] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[6] Meng X, Kildishev A V, Fujita K, Tanaka K and Shalaev V M 2013 Nano Lett. 13 4106
[7] Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I and Zharov V P 2017 Nat. Commun. 8 15528
[8] Chen S H, Yu C F, Wang C J, Chen S H, Chen Y D, Chen T C and Lin C F 2016 Org. Electr. 38 337
[9] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura S, Chiba H and Notomi M 2020 Nat. Photonics 14 37
[10] Yu P, Besteiro L V, Wu J, Huang Y, Wang Y, Govorov A O and Wang Z 2018 Opt. Express 26 20471
[11] Kong X T, Khorashad L K, Wang Z and Govorov A O 2018 Nano Lett. 18 2001
[12] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Adv. Opt. Mater. 7 1800995
[13] Marin B C, Hsu S W, Chen L, Lo A, Zwissler D W, Liu Z and Tao A R 2016 ACS Photonics 3 526
[14] Meng F, Hu J H, Wang H, Zou G Y, Cui J G and Zhao Y 2019 Acta Phys. Sin. 68 237801 (in Chinese)
[15] Ren Q H, Zhang Y, Lu H L, Chen H Y, Zhang Y, Li D H, Liu W J, Ding S J, Jiang A Q and Zhang D W 2016 Nanotechnology 27 165705
[16] Rashed A R, Habib M, Das N, Ozbay E and Caglayan H 2020 New J. Phys. 22 093033
[17] Bayles A, Carretero-Palacios S, Calió L, Lozano G, Calvo M E and Míguez H 2020 J. Mater. Chem. C 8 916
[18] Zhu Y Z, Chen J P, Cui Q N, Guo H, Li Z X, Shi Z L and Xu C X 2021 Nano Research 14 4288
[19] Russell K J, Liu T L, Cui S and Hu E L 2012 Nat. Photonics 6 459
[20] Matsuda K, Ito Y and Kanemitsu Y 2008 Appl. Phys. Lett. 92 211911
[21] Chen R A and Sun X 2015 Chin. Phys. Lett. 32 083601
[22] Viste P, Plain J, Jaffiol R, Vial A, Adam P M and Royer P 2010 ACS Nano 4 759
[23] Sen T and Patra A 2012 J. Phys. Chem. C 116 17307
[24] Abadeer N S, Brennan M R, Wilson W L and Murphy C J 2014 ACS Nano 8 8392
[25] Zhu Y Z, Cui Q N, Chen J P, Chen F, Shi Z L, Zhao X W and Xu C X 2021 ACS Appl. Mater. Interfaces 13 6820
[26] Breshike C J, Riskowski R A and Strouse G F 2013 J. Phys. Chem. C 117 23942
[27] Cheng F, Johnson A D, Tsai Y, Su P H, Hu S, Ekerdt J G and Shih C K 2017 ACS Photonics 4 1421
[28] Li J, Cushing S K, Meng F, Senty T R, Bristow A D and Wu N 2015 Nat. Photonics 9 601
[29] Wang Z J, Zhao J, Zhou Z, Qi Y G and Yu J S 2017 Chin. Phys. B 26 047302
[30] Lai R C, Liu Y Y, Luo X, Chen L, Han Y Y, Lv M, Liang G J, Chen J Q, Zhang C F, Di D W, Scholes G D, Castellano F N and Wu K F 2021 Nat. Commun. 12 1532
[31] Sönnichsen C, Franzl T, Wilk T, Plessen G V, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402
[32] Scholl J A, Koh A L and Dionne J 2012 Nature 483 421
[33] Liu Y, Zhang Y, Zhao K, Yang Z, Feng J, Zhang X, Wang K, Meng L, Ye H, Liu M and Liu S 2018 Adv. Mater. 30 1707314
[34] Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R and Zhan Y Q 2019 Acta Phys. Sin. 68 246801 (in Chinese)
[35] Lu H, Zhang H, Yuan S, Wang J, Zhan Y and Zheng L 2017 Phys. Chem. Chem. Phys. 19 4516
[36] Yang J X, Zhang P, Wang J P and Wei S H 2020 Chin. Phys. B 29 108401
[37] Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, F Yu, Zhang X, Zhao C and Liu S 2015 Adv. Mater. 27 5176
[38] Zhang Z H, Wei H, Manohari A G, You D T, Wang R, Li Z X, Liu W, Chen J P, Zhu Y Z, Shi Z L, Cui Q N, Li S and Xu C X 2021 Adv. Opt. Mater. 9 2002186
[39] Visikovskiy A, Matsumoto H, Mitsuhara K, Nakada T, Akita T and Kido Y 2011 Phy. Rev. B 83 165428
[1] Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals
Qiwen Zheng(郑棋文), Wenguang Lu(卢文广), Jiaqing Xu(胥加青), Yunyang Ye(叶云洋), Xinmin Zhao(赵新民), and Leyong Jiang(蒋乐勇). Chin. Phys. B, 2023, 32(7): 074208.
[2] Two-photon absorption of FAPbBr3 perovskite nanocrystals
Xuanyu Zhang(张轩宇), Shuyu Xiao(肖书宇), Xiongbin Wang(王雄彬), Tingchao He(贺廷超), and Rui Chen(陈锐). Chin. Phys. B, 2023, 32(6): 064212.
[3] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[4] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[5] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[9] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[10] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[11] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[14] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[15] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
No Suggested Reading articles found!