CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer |
Guo-Dong Yan(严国栋)1, Zhen-Hua Zhang(张振华)1, Heng Guo(郭衡)1, Jin-Ping Chen(陈金平)1, Qing-Song Jiang(蒋青松)2, Qian-Nan Cui(崔乾楠)1, Zeng-Liang Shi(石增良)1, and Chun-Xiang Xu(徐春祥)1,† |
1 State Key Laboratory of Bioelectronics, School of Physics, Southeast University, Nanjing 210096, China; 2 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223001, China |
|
|
Abstract Localized surface plasmon resonance (LSPR) has caused extensive concern and achieved widespread applications in optoelectronics. However, the weak coupling of plasmons and excitons in a nanometal/semiconductor system remains to be investigated via energy transfer. Herein, bandgap tunable perovskite films were synthesized to adjust the emission peaks, for further coupling with stable localized surface plasmons from gold nanoparticles. The degree of mismatch, using steady-state and transient photoluminescence (PL), was investigated systematically in two different cases of gold nanoparticles that were in direct contacting and insulated. The results demonstrated the process of tuning emission coupled to LSPR via wavelength-dependent photoluminescence intensity in the samples with an insulating spacer. In the direct contact case, the decreased radiative decay rate involves rapid plasmon resonance energy transfer to the perovskite semiconductor and non-radiative energy transfer to metal nanoparticles in the near-field range.
|
Received: 11 July 2022
Revised: 15 August 2022
Accepted manuscript online: 15 September 2022
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0700503 and 2018YFA0209101) and the National Natural Science Foundation of China (Grant Nos. 61821002, 11734005, 62075041, and 61704024). |
Corresponding Authors:
Chun-Xiang Xu
E-mail: xcxseu@seu.edu.cn
|
Cite this article:
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥) Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer 2023 Chin. Phys. B 32 067302
|
[1] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685 [2] Agrawal A, Cho S H, Zandi O, Ghosh S, Johns R W and Milliron D J 2018 Chem. Rev. 118 3121 [3] Mu X, Hu L, Cheng Y, Fang Y and Sun M 2021 Nanoscale 13 581 [4] Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J and Duan H G 2019 Acta Phys. Sin. 68 247301 (in Chinese) [5] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110 [6] Meng X, Kildishev A V, Fujita K, Tanaka K and Shalaev V M 2013 Nano Lett. 13 4106 [7] Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I and Zharov V P 2017 Nat. Commun. 8 15528 [8] Chen S H, Yu C F, Wang C J, Chen S H, Chen Y D, Chen T C and Lin C F 2016 Org. Electr. 38 337 [9] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura S, Chiba H and Notomi M 2020 Nat. Photonics 14 37 [10] Yu P, Besteiro L V, Wu J, Huang Y, Wang Y, Govorov A O and Wang Z 2018 Opt. Express 26 20471 [11] Kong X T, Khorashad L K, Wang Z and Govorov A O 2018 Nano Lett. 18 2001 [12] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Adv. Opt. Mater. 7 1800995 [13] Marin B C, Hsu S W, Chen L, Lo A, Zwissler D W, Liu Z and Tao A R 2016 ACS Photonics 3 526 [14] Meng F, Hu J H, Wang H, Zou G Y, Cui J G and Zhao Y 2019 Acta Phys. Sin. 68 237801 (in Chinese) [15] Ren Q H, Zhang Y, Lu H L, Chen H Y, Zhang Y, Li D H, Liu W J, Ding S J, Jiang A Q and Zhang D W 2016 Nanotechnology 27 165705 [16] Rashed A R, Habib M, Das N, Ozbay E and Caglayan H 2020 New J. Phys. 22 093033 [17] Bayles A, Carretero-Palacios S, Calió L, Lozano G, Calvo M E and Míguez H 2020 J. Mater. Chem. C 8 916 [18] Zhu Y Z, Chen J P, Cui Q N, Guo H, Li Z X, Shi Z L and Xu C X 2021 Nano Research 14 4288 [19] Russell K J, Liu T L, Cui S and Hu E L 2012 Nat. Photonics 6 459 [20] Matsuda K, Ito Y and Kanemitsu Y 2008 Appl. Phys. Lett. 92 211911 [21] Chen R A and Sun X 2015 Chin. Phys. Lett. 32 083601 [22] Viste P, Plain J, Jaffiol R, Vial A, Adam P M and Royer P 2010 ACS Nano 4 759 [23] Sen T and Patra A 2012 J. Phys. Chem. C 116 17307 [24] Abadeer N S, Brennan M R, Wilson W L and Murphy C J 2014 ACS Nano 8 8392 [25] Zhu Y Z, Cui Q N, Chen J P, Chen F, Shi Z L, Zhao X W and Xu C X 2021 ACS Appl. Mater. Interfaces 13 6820 [26] Breshike C J, Riskowski R A and Strouse G F 2013 J. Phys. Chem. C 117 23942 [27] Cheng F, Johnson A D, Tsai Y, Su P H, Hu S, Ekerdt J G and Shih C K 2017 ACS Photonics 4 1421 [28] Li J, Cushing S K, Meng F, Senty T R, Bristow A D and Wu N 2015 Nat. Photonics 9 601 [29] Wang Z J, Zhao J, Zhou Z, Qi Y G and Yu J S 2017 Chin. Phys. B 26 047302 [30] Lai R C, Liu Y Y, Luo X, Chen L, Han Y Y, Lv M, Liang G J, Chen J Q, Zhang C F, Di D W, Scholes G D, Castellano F N and Wu K F 2021 Nat. Commun. 12 1532 [31] Sönnichsen C, Franzl T, Wilk T, Plessen G V, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402 [32] Scholl J A, Koh A L and Dionne J 2012 Nature 483 421 [33] Liu Y, Zhang Y, Zhao K, Yang Z, Feng J, Zhang X, Wang K, Meng L, Ye H, Liu M and Liu S 2018 Adv. Mater. 30 1707314 [34] Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R and Zhan Y Q 2019 Acta Phys. Sin. 68 246801 (in Chinese) [35] Lu H, Zhang H, Yuan S, Wang J, Zhan Y and Zheng L 2017 Phys. Chem. Chem. Phys. 19 4516 [36] Yang J X, Zhang P, Wang J P and Wei S H 2020 Chin. Phys. B 29 108401 [37] Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, F Yu, Zhang X, Zhao C and Liu S 2015 Adv. Mater. 27 5176 [38] Zhang Z H, Wei H, Manohari A G, You D T, Wang R, Li Z X, Liu W, Chen J P, Zhu Y Z, Shi Z L, Cui Q N, Li S and Xu C X 2021 Adv. Opt. Mater. 9 2002186 [39] Visikovskiy A, Matsumoto H, Mitsuhara K, Nakada T, Akita T and Kido Y 2011 Phy. Rev. B 83 165428 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|