CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5 |
Hao-Hang Xu(徐浩航)1, Qing-Yuan Liu(刘庆元)1,5, Chao Xin(辛潮)2, Qin-Xin Shen(申沁鑫)3, Jun Luo(罗军)3, Rui Zhou(周睿)3, Jin-Guang Cheng(程金光)3, Jian Liu(刘健)4, Ling-Ling Tao(陶玲玲)1, Zhi-Guo Liu(刘志国)1, Ming-Xue Huo(霍明学)4, Xian-Jie Wang(王先杰)1, and Yu Sui(隋郁)1,4,† |
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China; 2 School of Science, Changchun University of Science and Technology, Changchun 130022, China; 3 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China; 5 Southwest Institute of Applied Magnetics, Mianyang 621000, China |
|
|
Abstract Quasi-one-dimensional (1D) antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra. Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+ occupation, in which the Co2+ ions with S=3/2 form a 1D spin chain along the a-axis. CoTi2O5 undergoes an antiferromagnetic transition at TN ~ 24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region. Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins, by analyzing the specific heat, the thermal conductivity, and the spin-lattice relaxation rate (1/T1) as a function of temperature, we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN, manifested by the rapid decrease of magnetic specific heat to zero, the double-peak characteristic in thermal conductivity, and the exponential decay of 1/T1 below TN. Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5, which induces the magnetic anisotropy in CoTi2O5, and then opens the spin gap at low temperature.
|
Received: 15 September 2023
Revised: 26 November 2023
Accepted manuscript online: 08 December 2023
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: his work was supported by the National Natural Science Foundation of China (Grant No. 52372003) and the Funds from Beijing National Laboratory for Condensed Matter Physics. A portion of this work was carried out at the Synergetic Extreme Condition User Facility (SECUF). |
Corresponding Authors:
Yu Sui
E-mail: suiyu@hit.edu.cn
|
Cite this article:
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁) Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5 2024 Chin. Phys. B 33 037505
|
[1] Zapf V, Jaime M and Batista C D 2014 Rev. Mod. Phys. 86 563 [2] Clark L and Abdeldaim A H 2021 Annu. Rev. Mater. Res. 51 495 [3] Hu T and Kan E 2019 WIREs Comput. Mol. Sci. 9 e1409 [4] Wang Z, Schmidt M, Loidl A, Wu J, Zou H, Yang W, Dong C, Kohama Y, Kindo K, Gorbunov D I, Niesen S, Breunig O, Engelmayer J and Lorenz T 2019 Phys. Rev. Lett. 123 067202 [5] Fujiwara N, Môri N, Uwatoko Y, Matsumoto T, Motoyama N and Uchida S 2003 Phys. Rev. Lett. 90 137001 [6] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984 [7] Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Böni P 1999 Phys. Rev. Lett. 83 632 [8] Paul S and Ghosh A K 2014 J. Magn. Magn. Mater. 362 193 [9] Vasil'ev A N, Markina M M and Popova E A 2005 Low Temp. Phys. 31 203 [10] Vasiliev A, Volkova O, Zvereva E and Markina M 2018 npj Quantum Mater. 3 18 [11] Pouget J P, Regnault L P, Ain M, Hennion B, Renard J P, Veillet P, Dhalenne G and Revcolevschi A 1994 Phys. Rev. Lett. 72 4037 [12] Dender D C, Hammar P R, Reich D H, Broholm C and Aeppli G 1997 Phys. Rev. Lett. 79 1750 [13] Grenier B, Petit S, Simonet V, Canévet E, Regnault L-P, Raymond S, Canals B, Berthier C and Lejay P 2015 Phys. Rev. Lett. 114 017201 [14] Pan B Y, Xu Y, Ni J M, Zhou S Y, Hong X C, Qiu X and Li S Y 2022 Phys. Rev. Lett. 129 167201 [15] Liu J, Kittaka S, Johnson R D, Lancaster T, Singleton J, Sakakibara T, Kohama Y, van Tol J, Ardavan A, Williams B H, Blundell S J, Manson Z E, Manson J L and Goddard P A 2019 Phys. Rev. Lett. 122 057207 [16] Kimura S, Yashiro H, Okunishi K, Hagiwara M, He Z, Kindo K, Taniyama T and Itoh M 2007 Phys. Rev. Lett. 99 087602 [17] Suzuki Y and Shinoda Y 2011 Sci. Technol. Adv. Mater. 12 034301 [18] Kirschner F K K, Johnson R D, Lang F, Khalyavin D D, Manuel P, Lancaster T, Prabhakaran D and Blundell S J 2019 Phys. Rev. B 99 064403 [19] Balbashov A M, Mukhin A A, Ivanov V Y, Iskhakova L D and Voronchikhina M E 2017 Low Temp. Phys. 43 965 [20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [22] Blöchl P E 1994 Phys. Rev. B 50 17953 [23] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [24] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [26] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [27] Xirouchakis D, Smirnov A, Woody K, Lindsley D H and Andersen D J 2002 Am. Mineral. 87 658 [28] Liu Q Y, Xu H H, Liu J, Liu Z G, Huo M X, Wang X J and Sui Y 2022 J. Magn. Magn. Mater. 546 168864 [29] He M, Winkler B, Bauer J D, Bayarjargal L, Ruiz-Fuertes J, Alencar I, Morgenroth W, Refson K and Milman V 2017 J. Alloys Compd. 699 16 [30] Lennie A R, Knight K S and Henderson M B 2007 Am. Mineral. 92 1165 [31] Law J M, Benner H and Kremer R K 2013 J. Phys.: Condens. Matter 25 065601 [32] Zhang Y, Lin L F, Moreo A and Dagotto E 2022 Appl. Phys. Lett. 120 023101 [33] Thota S, Ghosh S, R M, Joshi D C, Medwal R, Rawat R S and Seehra M S 2021 Phys. Rev. B 103 064415 [34] Hatfield W E, Estes W E, Marsh W E, Pickens M W, ter Haar L W and Weller R R 1983 The Synthesis and Static Magnetic Properties of First-Row Transition-Metal Compounds with Chain Structures. In: Miller J S (ed) Extended Linear Chain Compounds (Boston, MA: Springer p. 89 [35] Salazar A, Massot M, Oleaga A, Pawlak A and Schranz W 2007 Phys. Rev. B 75 224428 [36] Ma S 2018 Modern Theory Of Critical Phenomena (Routledge) p. 55 [37] LIFSHITZ E M and PITAEVSKI L P 1980 Statistical Physics (Amsterdam: Elsevier) p. 284 [38] Markina M, Vasiliev A, Mueller J, Lang M, Kordonis K, Lorenz T, Isobe M and Ueda Y 2003 J. Magn. Magn. Mater. 258 398 [39] Liu X, Wosnitza J, Löhneysen H v and Kremer R K 1995 Phys. Rev. Lett. 75 771 [40] Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X and Sun X F 2012 Phys. Rev. B 85 134412 [41] Kudo K, Ishikawa S, Noji T, Adachi T, Koike Y, Maki K, Tsuji S and Kumagai K 2001 J. Phys. Soc. Jpn. 70 437 [42] Tkáč V, Tibenská K, Orendáčová A, Orendáč M, Šebek J, Sechovský V, Anders A G, Pavlík V and Feher A 2011 Phys. Status Solidi 248 2834 [43] Sologubenko A V, Giannó K, Ott H R, Vietkine A and Revcolevschi A 2001 Phys. Rev. B 64 054412 [44] Chen X, Kim J, Jia Q, Sullivan S E, Xu Y, Jarvis K, Zhou J and Shi L 2020 Adv. Funct. Mater. 30 2001637 [45] Sato M, Kawamata T, Naruse K, Kudo K, Kobayashi N and Koike Y 2012 J. Phys. Conf. Ser. 400 032079 [46] Kudo K, Yamazaki M, Kawamata T, Noji T, Koike Y, Nishizaki T, Kobayashi N and Tanaka H 2004 J. Phys. Soc. Jpn. 73 2358 [47] Kageyama H, Suzuki H, Nohara M, Onizuka K, Takagi H and Ueda Y 2000 Physica B 281 667 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|