Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037505    DOI: 10.1088/1674-1056/ad1381
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5

Hao-Hang Xu(徐浩航)1, Qing-Yuan Liu(刘庆元)1,5, Chao Xin(辛潮)2, Qin-Xin Shen(申沁鑫)3, Jun Luo(罗军)3, Rui Zhou(周睿)3, Jin-Guang Cheng(程金光)3, Jian Liu(刘健)4, Ling-Ling Tao(陶玲玲)1, Zhi-Guo Liu(刘志国)1, Ming-Xue Huo(霍明学)4, Xian-Jie Wang(王先杰)1, and Yu Sui(隋郁)1,4,†
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 School of Science, Changchun University of Science and Technology, Changchun 130022, China;
3 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China;
5 Southwest Institute of Applied Magnetics, Mianyang 621000, China
Abstract  Quasi-one-dimensional (1D) antiferromagnets are known to display intriguing phenomena especially when there is a spin gap in their spin-excitation spectra. Here we demonstrate that a spin gap exists in the quasi-1D Heisenberg antiferromagnet CoTi2O5 with highly ordered Co2+/Ti4+ occupation, in which the Co2+ ions with S=3/2 form a 1D spin chain along the a-axis. CoTi2O5 undergoes an antiferromagnetic transition at TN ~ 24 K and exhibits obvious anisotropic magnetic susceptibility even in the paramagnetic region. Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins, by analyzing the specific heat, the thermal conductivity, and the spin-lattice relaxation rate (1/T1) as a function of temperature, we found that a spin gap is opened in the spin-excitation spectrum of CoTi2O5 around TN, manifested by the rapid decrease of magnetic specific heat to zero, the double-peak characteristic in thermal conductivity, and the exponential decay of 1/T1 below TN. Both the magnetic measurements and the first-principles calculations results indicate that there is spin-orbit coupling in CoTi2O5, which induces the magnetic anisotropy in CoTi2O5, and then opens the spin gap at low temperature.
Keywords:  quasi-one-dimensional antiferromagnet      magnetic anisotropy      spin gap  
Received:  15 September 2023      Revised:  26 November 2023      Accepted manuscript online:  08 December 2023
PACS:  75.50.Ee (Antiferromagnetics)  
  75.30.Gw (Magnetic anisotropy)  
Fund: his work was supported by the National Natural Science Foundation of China (Grant No. 52372003) and the Funds from Beijing National Laboratory for Condensed Matter Physics. A portion of this work was carried out at the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Yu Sui     E-mail:  suiyu@hit.edu.cn

Cite this article: 

Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁) Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5 2024 Chin. Phys. B 33 037505

[1] Zapf V, Jaime M and Batista C D 2014 Rev. Mod. Phys. 86 563
[2] Clark L and Abdeldaim A H 2021 Annu. Rev. Mater. Res. 51 495
[3] Hu T and Kan E 2019 WIREs Comput. Mol. Sci. 9 e1409
[4] Wang Z, Schmidt M, Loidl A, Wu J, Zou H, Yang W, Dong C, Kohama Y, Kindo K, Gorbunov D I, Niesen S, Breunig O, Engelmayer J and Lorenz T 2019 Phys. Rev. Lett. 123 067202
[5] Fujiwara N, Môri N, Uwatoko Y, Matsumoto T, Motoyama N and Uchida S 2003 Phys. Rev. Lett. 90 137001
[6] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984
[7] Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Böni P 1999 Phys. Rev. Lett. 83 632
[8] Paul S and Ghosh A K 2014 J. Magn. Magn. Mater. 362 193
[9] Vasil'ev A N, Markina M M and Popova E A 2005 Low Temp. Phys. 31 203
[10] Vasiliev A, Volkova O, Zvereva E and Markina M 2018 npj Quantum Mater. 3 18
[11] Pouget J P, Regnault L P, Ain M, Hennion B, Renard J P, Veillet P, Dhalenne G and Revcolevschi A 1994 Phys. Rev. Lett. 72 4037
[12] Dender D C, Hammar P R, Reich D H, Broholm C and Aeppli G 1997 Phys. Rev. Lett. 79 1750
[13] Grenier B, Petit S, Simonet V, Canévet E, Regnault L-P, Raymond S, Canals B, Berthier C and Lejay P 2015 Phys. Rev. Lett. 114 017201
[14] Pan B Y, Xu Y, Ni J M, Zhou S Y, Hong X C, Qiu X and Li S Y 2022 Phys. Rev. Lett. 129 167201
[15] Liu J, Kittaka S, Johnson R D, Lancaster T, Singleton J, Sakakibara T, Kohama Y, van Tol J, Ardavan A, Williams B H, Blundell S J, Manson Z E, Manson J L and Goddard P A 2019 Phys. Rev. Lett. 122 057207
[16] Kimura S, Yashiro H, Okunishi K, Hagiwara M, He Z, Kindo K, Taniyama T and Itoh M 2007 Phys. Rev. Lett. 99 087602
[17] Suzuki Y and Shinoda Y 2011 Sci. Technol. Adv. Mater. 12 034301
[18] Kirschner F K K, Johnson R D, Lang F, Khalyavin D D, Manuel P, Lancaster T, Prabhakaran D and Blundell S J 2019 Phys. Rev. B 99 064403
[19] Balbashov A M, Mukhin A A, Ivanov V Y, Iskhakova L D and Voronchikhina M E 2017 Low Temp. Phys. 43 965
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Blöchl P E 1994 Phys. Rev. B 50 17953
[23] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[24] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[27] Xirouchakis D, Smirnov A, Woody K, Lindsley D H and Andersen D J 2002 Am. Mineral. 87 658
[28] Liu Q Y, Xu H H, Liu J, Liu Z G, Huo M X, Wang X J and Sui Y 2022 J. Magn. Magn. Mater. 546 168864
[29] He M, Winkler B, Bauer J D, Bayarjargal L, Ruiz-Fuertes J, Alencar I, Morgenroth W, Refson K and Milman V 2017 J. Alloys Compd. 699 16
[30] Lennie A R, Knight K S and Henderson M B 2007 Am. Mineral. 92 1165
[31] Law J M, Benner H and Kremer R K 2013 J. Phys.: Condens. Matter 25 065601
[32] Zhang Y, Lin L F, Moreo A and Dagotto E 2022 Appl. Phys. Lett. 120 023101
[33] Thota S, Ghosh S, R M, Joshi D C, Medwal R, Rawat R S and Seehra M S 2021 Phys. Rev. B 103 064415
[34] Hatfield W E, Estes W E, Marsh W E, Pickens M W, ter Haar L W and Weller R R 1983 The Synthesis and Static Magnetic Properties of First-Row Transition-Metal Compounds with Chain Structures. In: Miller J S (ed) Extended Linear Chain Compounds (Boston, MA: Springer p. 89
[35] Salazar A, Massot M, Oleaga A, Pawlak A and Schranz W 2007 Phys. Rev. B 75 224428
[36] Ma S 2018 Modern Theory Of Critical Phenomena (Routledge) p. 55
[37] LIFSHITZ E M and PITAEVSKI L P 1980 Statistical Physics (Amsterdam: Elsevier) p. 284
[38] Markina M, Vasiliev A, Mueller J, Lang M, Kordonis K, Lorenz T, Isobe M and Ueda Y 2003 J. Magn. Magn. Mater. 258 398
[39] Liu X, Wosnitza J, Löhneysen H v and Kremer R K 1995 Phys. Rev. Lett. 75 771
[40] Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X and Sun X F 2012 Phys. Rev. B 85 134412
[41] Kudo K, Ishikawa S, Noji T, Adachi T, Koike Y, Maki K, Tsuji S and Kumagai K 2001 J. Phys. Soc. Jpn. 70 437
[42] Tkáč V, Tibenská K, Orendáčová A, Orendáč M, Šebek J, Sechovský V, Anders A G, Pavlík V and Feher A 2011 Phys. Status Solidi 248 2834
[43] Sologubenko A V, Giannó K, Ott H R, Vietkine A and Revcolevschi A 2001 Phys. Rev. B 64 054412
[44] Chen X, Kim J, Jia Q, Sullivan S E, Xu Y, Jarvis K, Zhou J and Shi L 2020 Adv. Funct. Mater. 30 2001637
[45] Sato M, Kawamata T, Naruse K, Kudo K, Kobayashi N and Koike Y 2012 J. Phys. Conf. Ser. 400 032079
[46] Kudo K, Yamazaki M, Kawamata T, Noji T, Koike Y, Nishizaki T, Kobayashi N and Tanaka H 2004 J. Phys. Soc. Jpn. 73 2358
[47] Kageyama H, Suzuki H, Nohara M, Onizuka K, Takagi H and Ueda Y 2000 Physica B 281 667
[1] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[2] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[3] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[4] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[5] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[6] Bending sensor based on flexible spin valve
L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov. Chin. Phys. B, 2023, 32(5): 057502.
[7] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[8] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy
Tianyong Ma(马天勇), Sha Zhang(张莎), Chenhu Zhang(张晨虎), Zhiwei Li(李志伟), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2023, 32(12): 127503.
[11] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[12] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[13] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[14] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[15] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
No Suggested Reading articles found!