Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037506    DOI: 10.1088/1674-1056/acfafa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate

Cai Zhou(周偲)1,3, Shaokang Yuan(袁少康)2,3, Dengyu Zhu(朱登玉)2,3, Yuming Bai(白宇明)4, Tao Wang(王韬)4, Fufu Liu(刘福福)5, Lulu Pan(潘禄禄)6, Cunfang Feng(冯存芳)1,3, Bohan Zhang(张博涵)1,3,†, Daping He(何大平)7, and Shengxiang Wang(汪胜祥)1,3,‡
1 Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and Testing, Wuhan Textile University, Wuhan 430200, China;
2 School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China;
3 School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China;
4 School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China;
5 Key Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China;
6 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
7 Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
Abstract  The flexible materials exhibit more favorable properties than most rigid substrates in flexibility, weight saving, mechanical reliability, and excellent environmental toughness. Particularly, flexible graphene film with unique mechanical properties was extensively explored in high frequency devices. Herein, we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature. The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure. In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance, which can be ascribed to the enhancement of crystallinity and the increase of grain size. Meanwhile, the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film. Moreover, in our case with graphene film, the resonance magnetic field is quite stable though folded for twenty cycles, which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate. These results are promising for the design of microwave devices and wireless communication equipment.
Keywords:  enhanced resonance frequency      magnetic resonance field      flexible graphene substrate  
Received:  08 August 2023      Revised:  18 September 2023      Accepted manuscript online:  19 September 2023
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  32.30.Dx (Magnetic resonance spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901163 and 12104171) and the Fundamental Research Funds for the Central Universities (Grant No. 2021XXJS025).
Corresponding Authors:  Bohan Zhang, Shengxiang Wang     E-mail:  bhzhang@wtu.edu.cn;shxwang@wtu.edu.cn

Cite this article: 

Cai Zhou(周偲), Shaokang Yuan(袁少康), Dengyu Zhu(朱登玉), Yuming Bai(白宇明), Tao Wang(王韬), Fufu Liu(刘福福), Lulu Pan(潘禄禄), Cunfang Feng(冯存芳), Bohan Zhang(张博涵), Daping He(何大平), and Shengxiang Wang(汪胜祥) Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate 2024 Chin. Phys. B 33 037506

[1] Mehdlpour A, Trueman C W, Sebak A R and Hoa S V 2009 IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA, 2009, pp. 1–4
[2] Rutherglen C, Jain D and Burke P 2009 Nat. Nanotechnol. 4 811
[3] Elwi T A, Al-Rizzo H M, Rucker D G, Dervishi E, Li Z and Biris A S 2010 Nanotechnology 21 045301
[4] Puchades I, Rossi J E, Cress C D, Naglich E and Landi B J 2016 ACS Appl. Mater. Interfaces. 8 20986
[5] Vacirca N A, McDonough J K, Jost K, Gogotsi Y and Kurzweg T P 2013 Appl. Phys. Lett. 103 073301
[6] Shenderova O, Grishko V, Cunningham G, Moseenkov S, McGuire G and Kuznetsov V 2008 Diam. Relat. Mater. 17 462
[7] Sajal S Z, Braaten B D and Marinov V R 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 2015, pp. 2415–2416
[8] Sa’don S N H, Kamarudin M R, Ahmad F, Jusoh M and Majid H A 2017 Appl. Phys. A 123 118
[9] Takeichi T, Eguchi Y, Kaburagi Y, Hishiyama Y and Inagaki M 1999 Carbon 37 569
[10] Ubbelohde A R 1976 Carbon 14 1
[11] Hishiyama Y, Nakamura M, Nagata Y and Inagaki M 1994 Carbon 32 645
[12] Fan C, Wu B, Song R G, Zhao Y T, Zhang Y H and He D P 2019 Carbon 155 506
[13] Song R G, Mao B Y, Wang Z, Hui Y Y, Zhang N, Fang R, Zhang J W, Wu Y, Ge Q, Novoselov K S and He D P 2023 Proc. Natl. Acad. Sci. USA 120 e2209807120
[14] Qian W, Fu H Q, Sun Y, Wang Z, Wu H, Kou Z K, Li B W, He D P and Nan C W 2022 Adv. Mater. 34 2206101
[15] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[16] Felser C and Hillebrands B 2007 J. Phys. D: Appl. Phys. 40 E01
[17] Gabor M S, Petrisor T, Tiusan C, Hehn M and Petrisor T 2011 Phys. Rev. B 84 134413
[18] Cui Y S, Khodadadi B, Schäfer S, Mewes T, Lu J W and Wolf S A 2013 Appl. Phys. Lett. 102 162403
[19] Gupta R, Husain S, Kumar A, Brucas R, Rydberg A and Svedlindh P 2021 Adv. Opt. Mater. 9 2001987
[20] Belmeguenai M, Tuzcuoglu H, Gabor M S, Petrisor Jr T,, Tiusan C, Zighem F, Chérif S M and Moch P 2014 J. Appl. Phys. 115 043918
[21] Zhou C, Dunzhu G S, Yao J L and Jiang C J 2017 J. Alloys Compd. 710 680
[22] Zhou C, Wang F L, Dunzhu G S, Yao J L and Jiang C J 2016 J. Phys. D: Appl. Phys. 49 455001
[23] Wang G X, Dong C H, Wang W X, Wang Z L, Chai G Z, Jiang C J and Xue D S 2012 J. Appl. Phys. 112 093907
[24] Zhou C, Wang F L, Wei W W, Wang G X, Jiang C J and Xue D S 2013 J. Phys. D: Appl. Phys. 46 425002
[25] Mecking N, Gui Y S and Hu C M 2007 Phys. Rev. B 76 224430
[26] Kittel C 1948 Phys. Rev. B 73 155
[27] Song N N, Gu S Z, Wu Q, Li C L, Zhou J, Zhang P P, Wang W and Yue M 2018 J. Magn. Magn. Mater. 451 793
[28] Holanda J, Saglam H, Karakas V, Zang Z Z, Li Y, Divan R, Liu Y Z, Ozatay O, Novosad V, Pearson J E and Hoffmann A 2020 Phys. Rev. Lett. 124 087204
[29] Kipgen L, Fulara H, Raju M and Chaudhary S 2012 J. Magn. Magn. Mater. 324 3118
[1] Coercivity mechanism of La-Nd-Fe-B films with Y spacer layer
Jun Ma(马俊), Xiao-Tian Zhao(赵晓天), Wei Liu(刘伟), Yang Li(李阳), Long Liu(刘龙), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2024, 33(3): 037507.
[2] Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy
Tianyong Ma(马天勇), Sha Zhang(张莎), Chenhu Zhang(张晨虎), Zhiwei Li(李志伟), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2023, 32(12): 127503.
[3] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[4] Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink
Min-Hui Ji(冀敏慧), Xin-Miao Zhang(张欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法), Yue-Guo Hu(胡悦国), Jia-Fei Hu(胡佳飞), Wei-Cheng Qiu(邱伟成), Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森). Chin. Phys. B, 2023, 32(7): 078506.
[5] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[6] Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures
Yibing Zhao(赵逸冰), Xiaoxiao Fang(方晓筱), Zhirui Wang(王志睿), Miao Cheng(程淼), Yongjia Tan(谭永嘉), Dongxiong Wei(韦东雄), Changjun Jiang(蒋长军), and Jinli Yao(幺金丽). Chin. Phys. B, 2023, 32(5): 056701.
[7] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[8] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[9] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[10] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[11] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[12] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[13] Spin orbit torques in Pt-based heterostructures with van der Waals interface
Qian Chen(陈倩), Weiming Lv(吕伟明), Shangkun Li(李尚坤), Wenxing Lv(吕文星), Jialin Cai(蔡佳林), Yonghui Zhu(朱永慧), Jiachen Wang(王佳晨), Rongxin Li(李荣鑫), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2021, 30(9): 097506.
[14] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[15] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
No Suggested Reading articles found!