Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄)1,2, Fan-Li Yang(杨凡黎)1, Hao-Yu Niu(牛浩峪)2, Li-Feng Wang(王立峰)1, Li-Zhi Yi(易立志)1, Yun-Li Xu(许云丽)1, Min Liu(刘敏)1, Li-Qing Pan(潘礼庆)1,†, and Zheng-Cai Xia(夏正才)2,‡
1 Hubei Engineering Research Center of Weak Magnetic-field Detection, College of Science, China Three Gorges University, Yichang 443002, China; 2 Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance (MR) effect in a low static magnetic field environment at room temperature. However, how to obtain a large room-temperature negative MR effect in them remains to be studied. In this paper, by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side, we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment, but not in a static low magnetic field environment. Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory, we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field. This theoretical analytical model is further confirmed by regulating the geometry size of the device. Our work sheds light on the development of novel magnetic sensing, magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.
Fund: Project supported by the Special Funding for Talents of Three Gorges University (Grant No. 8230202), the National Natural Science Foundation of China (Grant No. 12274258), and National Key R&D Program of China (Grant No. 2016YFA0401003).
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才) Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices 2024 Chin. Phys. B 33 037504
[1] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature514 205 [2] Qian B, Tang F, Ruan Y R, Fang Y, Han Z D, Jiang X F, Zhang J M, Chen S Y and Wang D H 2018 J. Mater. Chem. C6 10020 [3] Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K 2009 Nature457 1112 [4] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X 2018 Science360 1214 [5] Tian Y F and Yan S S 2013 Sci. China Phys. Mech. Astron.56 2 [6] Wan C H, Zhang X Z, Gao X L, Wang J M and Tan X Y 2011 Nature477 304 [7] Luo Z C, Piao H G, Brooks A V, Wang X, Chen J, Xiong C, Yang F, Wang X, Zhang X-G and Zhang X 2017 Adv. Electron. Mater.3 1700186 [8] Chen J J, Zhang X Z, Piao H G, Wang J M and Luo Z C 2014 Appl. Phys. Lett.105 193508 [9] Porter N A and Marrows C H 2012 Sci. Rep.2 565 [10] Sun Z G, Mizuguchi M, Manago T and Akinaga H 2004 Appl. Phys. Lett.85 5643 [11] Schoonus J J H M, Bloom F L, Wagemans W, Swagten H J M and Koopmans B 2008 Phys. Rev. Lett.100 127202 [12] Huang Q K, Wang J, Lu S Y, Chen Y X, Bai L H, Dai Y Y, Tian Y F and Yan S S 2018 ACS Appl. Mater. Interfaces10 24905 [13] Zhang K, Huang Q K, Yan Y, Wang X L, Wang J, Kang S S and Tian Y F 2016 Appl. Phys. Lett.109 213503 [14] Wang X J, Wang T, Yang D Z, Yang Z L, Li D, Chen M Y, Si M S, Xue D S and Zhang Z X 2017 Carbon123 106 [15] Yang D Z, Wang F C, Ren Y, Zuo Y L, Peng Y, Zhou S M and Xue D S 2013 Adv. Funct. Mater.23 2918 [16] Schoonus J J H M, Haazen P P J, Swagten H J M and Koopmans B 2009 J. Phys. D: Appl. Phys.42 185011 [17] He X and Sun Z G 2018 Chin. Phys. B27 067204 [18] Huang Q K, Yan Y, Zhang K, Li H H, Kang S and Tian Y F 2016 Sci. Rep.6 37748 [19] Zhang K, Li H H, Grünberg P, Li Q, Ye S T, Tian Y F, Yan S S, Lin Z J, Kang S S, Chen Y X, Liu G L and Mei L M 2015 Sci. Rep.5 14249 [20] Chen J J, Zhang X Z, Luo Z C, Wang J M and Piao H G 2014 J. Appl. Phys.116 114511 [21] He X, Sun Z G, Pang Y Y and Li Y C 2017 J. Appl. Phys.121 114501 [22] He X, Xia Z C, Niu H Y and Zeng Z 2022 J. Mater. Sci. Technol.114 1 [23] Wang H C, Liu H W, Li Y A, Liu Y J, Wang J F, Liu J, Dai J Y, Wang Y, Li L, Yan J Q, Mandrus D, Xie X C and Wang J 2018 Sci. Adv.4 eaau5096 [24] Zhu Z W, Wang J H, Zuo H K, Fauque B, McDonald R D, Fuseya Y and Behnia K 2017 Nat. Commun.8 15297 [25] Zhang X X, Xia Z C, Ke Y J, Zhang X Q, Cheng Z H, Ouyang Z W, Wang J F, Huang S, Yang F, Song Y J, Xiao G L, Deng H and Jiang D Q 2019 Phys. Rev. B100 054418 [26] Yang F, Feng Q Y, Xia Z C, Lu Q Y, Song Y J, Huang S, Zhang X X, Jiang D Q, Deng H, Zeng Z, Niu H Y, Cheng C, Hou Y B and Tian Z M 2021 J. Alloys Compd.860 158426 [27] Niu H Y, Zeng Z, Song Y J, Huang H, Liang Y Y, Jiang D Q, Tian Z M, Ouyang Z W and Xia Z C 2022 Phys. Rev. B105 054401 [28] Chen J J, Piao H G, Luo Z C and Zhang X Z 2015 Appl. Phys. Lett.106 173503 [29] Furth H P and Waniek R W 1956 Phys. Rev.104 343 [30] Cheng B, Qin H W and Hu J F 2017 J. Phys. D: Appl. Phys.50 445001 [31] He X, Xia Z C, Niu H Y, Song Y J, Zeng Z, Jiang D Q, Liang Y Y and Huang H 2022 Phys. Status Solidi RRL16 2200165 [32] He X, Yang Z, Zhu C, He B, Luo F, Wei P, Zhao W Y, Wang J F and Sun Z G 2020 J. Phys.: Condens. Matter32 305701 [33] Delmo M P, Shikoh E, Shinjo T and Shiraishi M 2013 Phys. Rev. B87 245301 [34] Tsidilkovskii I M, Giriat W, Kharus G I and Neifeld E A 1974 Phys. Status Solidi B64 717 [35] Brooks H 1955 Advances in Electronics and Electron Physics (New York: Academic Press) p. 85 [36] Akinaga H, De Boeck J, Borghs G, Miyanishi S, Asamitsu A, Van Roy W, Tomioka Y and Kuo L H 1998 Appl. Phys. Lett.72 3368 [37] Movchan E A and Bondar N N 1971 Phys. Status Solidi B47 K5 [38] Moser J, Tao H, Roche S, Alzina F, Sotomayor Torres C M and Bachtold A 2010 Phys. Rev. B81 205445 [39] Matis B R, Bulat F A, Friedman A L, Houston B H and Baldwin J W 2012 Phys. Rev. B85 195437 [40] Bloom F L, Wagemans W, Kemerink M and Koopmans B 2007 Phys. Rev. Lett.99 257201 [41] Bloom F L, Kemerink M, Wagemans W and Koopmans B 2009 Phys. Rev. Lett.103 066601 [42] Argyres P N and Adams E N 1956 Phys. Rev.104 900 [43] Zhang N, Zhao G, Li L, Wang P D, Xie L, Cheng B, Li H, Lin Z Y, Xi C Y, Ke J Z, Yang M, He J Q, Sun Z, Wang Z F, Zhang Z Y and Zeng C G 2020 Proc. Natl. Acad. Sci. USA117 11337 [44] Xu J, Ma M K, Sultanov M, Xiao Z L, Wang Y L, Jin D F, Lyu Y Y, Zhang W, Pfeiffer L N, West K W, Baldwin K W, Shayegan M and Kwok W K 2019 Nat. Commun.10 287 [45] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science350 413 [46] Wu L H, Zhang X, Vanacken J, Schildermans N, Wan C H and Moshchalkov V V 2011 Appl. Phys. Lett.98 112113 [47] Patel M and Karamalidis A K 2021 Sep. Purif. Technol.275 118981 [48] Chen J J, Piao H G, Luo Z C, Xiong C Y and Zhang X Z 2016 Chin. Phys. Lett.33 047501 [49] Joo S, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature494 72
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.