INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer |
Yao Xu(徐耀)1, Shu-Wei Huang(黄舒伟)1, Hong-Ming Ding(丁泓铭)2,†, and Yu-Qiang Ma(马余强)1 |
1 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract Recently, lipid nanoparticles (LNPs) have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency, safety, and straightforward production and scalability. However, the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive. In this study, we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer. Our findings revealed that hydrophilic bases, specifically G in single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), displayed a higher propensity to form hydrogen bonds with phospholipid head groups. Notably, ssRNA exhibited stronger binding energy than ssDNA. Furthermore, divalent ions, particularly Ca2+, facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids. Overall, our study provides valuable insights into the molecular mechanisms underlying nucleic acid-phospholipid interactions, with potential implications for the nucleic acids in biotherapies, particularly in the context of lipid carriers.
|
Received: 02 October 2023
Revised: 10 November 2023
Accepted manuscript online: 01 December 2023
|
PACS:
|
87.14.Cc
|
(Lipids)
|
|
87.14.G-
|
(Nucleic acids)
|
|
87.15.ap
|
(Molecular dynamics simulation)
|
|
87.16.D-
|
(Membranes, bilayers, and vesicles)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12222506, 12347102, and 12174184). We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for performing the numerical calculations in this paper on its blade cluster system. |
Corresponding Authors:
Hong-Ming Ding
E-mail: dinghm@suda.edu.cn
|
Cite this article:
Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强) Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer 2024 Chin. Phys. B 33 028701
|
[1] Sung Y K and Kim S W 2019 Biomater. Res. 23 8 [2] Anguela X M and High K A 2019 Annu. Rev. Med. 70 273 [3] Angell C, Xie S, Zhang L and Chen Y 2016 Small 12 1117 [4] Guan S and Rosenecker J 2017 Gene. Ther. 24 133 [5] Hajj K A and Whitehead K A 2017 Nat. Rev. Mater. 2 17056 [6] Lostalé-Seijo I and Montenegro J 2018 Nat. Rev. Chem. 2 258 [7] Mo F, Jiang K, Zhao D, Wang Y, Song J and Tan W 2021 Adv. Drug. Deliv. Rev. 168 79 [8] Hu Q, Li H, Wang L, Gu H and Fan C 2018 Chem. Rev. 119 6459 [9] Guan S and Rosenecker J 2017 Gene. Ther. 24 133 [10] Kanasty R, Dorkin J R, Vegas A and Anderson D 2013 Nat. Mater. 12 967 [11] Yin H, Kanasty R L, Eltoukhy A A, Vegas A J, Dorkin J R and Anderson D G 2014 Nat. Rev. Genet. 15 541 [12] Thomas C E, Ehrhardt A and Kay M A 2003 Nat. Rev. Genet. 4 346 [13] Vega-Villa K R, Takemoto J K, Yáñez J A, Remsberg C M, Forrest M L and Davies N M 2008 Adv. Drug. Deliv. Rev. 60 929 [14] Fenton O S, Kauffman K J, McClellan R L, Appel E A, Dorkin J R, Tibbitt M W, Heartlein M W, De Rosa F, Langer R and Anderson D G 2016 Adv. Mater. 28 2939 [15] Geall A J, Verma A, Otten G R, Shaw C A, Hekele A, Banerjee K, Cu Y, Beard C W, Brito L A, Krucker T, O'Hagan D T, Singh M, Mason P W, Valiante N M, Dormitzer P R, Barnett S W, Rappuoli R, Ulmer J B and Mandl C W 2012 Proc. Natl. Acad. Sci. USA 109 14604 [16] Thess A, Grund S, Mui B L, Hope M J, Baumhof P, Fotin-Mleczek M and Schlake T 2015 Mol. Ther. 23 1456 [17] Fenton O S, Kauffman K J, Kaczmarek J C, McClellan R L, Jhunjhunwala S, Tibbitt M W, Zeng M D, Appel E A, Dorkin J R, Mir F F, Yang J H, Oberli M A, Heartlein M W, DeRosa F, Langer R and Anderson D G 2017 Adv. Mater. 29 201606944 [18] Samaridou E, Heyes J and Lutwyche P 2020 Adv. Drug. Deliv. Rev. 154-155 37 [19] Semple S C, Klimuk S K, Harasym T O, Dos Santos N, Ansell S M, Wong K F, Maurer N, Stark H, Cullis P R, Hope M J and Scherrer P 2001 Biochim. Biophys. Acta Biomembr. 1510 152 [20] Tam P, Monck M, Lee D, Ludkovski O, Leng E C, Clow K, Stark H, Scherrer P, Graham R W and Cullis P R 2000 Gene. Ther. 7 1867 [21] Heyes J, Palmer L, Chan K, Giesbrecht C, Jeffs L and MacLachlan I 2007 Mol. Ther. 15 713 [22] Hou X, Zaks T, Langer R and Dong Y 2021 Nat. Rev. Mater. 6 1078 [23] Czerniak T and Saenz J P 2022 Proc. Natl. Acad. Sci. USA 119 e2119235119 [24] Rissanou A N, Ouranidis A and Karatasos K 2020 Soft Matter 16 6993 [25] Cheng X and Lee R J 2016 Adv. Drug. Deliv. Rev. 99 129 [26] Arnott P M, Joshi H, Aksimentiev A and Howorka S 2018 Langmuir 34 15084 [27] Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D and Decuzzi P 2021 Bioeng. Transl. Med. 6 e10213 [28] Ding H, Li J, Chen N, Hu X, Yang X, Guo L, Li Q, Zuo X, Wang L, Ma Y and Fan C 2018 ACS Cent. Sci. 4 1344 [29] Qiang X W, Zhang C, Dong H L, Tian F J, Fu H, Yang Y J, Dai L, Zhang X H and Tan Z J 2022 Phys. Rev. Lett. 128 108103 [30] Xu Y, Huang S W, Ma Y Q and Ding H M 2022 Nanoscale. Adv. 4 754 [31] Chen P, Yue H, Zhai X, Huang Z, Ma G H, Wei W and Yan L T 2019 Sci. Adv. 5 eaaw319 [32] Li X, Zhou S and Lin X 2022 J. Chem. Inf. Model 62 2421 [33] Zou A, Lee S, Li J and Zhou R 2020 J. Phys. Chem. B 124 701 [34] Chen X, Tian F, Li M, Xu H, Cai M, Li Q, Zuo X, Wang H, Shi X, Fan C, Baigude H and Shan Y 2020 Global Chal. 4 1900075 [35] Liu Q, Wang H, Shi X, Wang Z G and Ding B 2017 ACS Nano 11 7251 [36] Lu X J and Olson W K 2003 Nucleic. Acids. Res. 31 5108 [37] Wu E L, Cheng X, Jo S, Rui H, Song K C, Dávila-Contreras E M, Qi Y, Lee J, Monje-Galvan V, Venable R M, Klauda J B and Im W 2014 J. Comput. Chem. 35 1997 [38] Park S, Choi Y K, Kim S, Lee J and Im W 2021 J. Chem. Inf. Model. 61 5192 [39] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindah E 2015 SoftwareX 1-2 19 [40] Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43 [41] Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E and Simmerling C 2015 J. Chem. Theory. Comput. 11 3696 [42] Ivani I, Dans P D, Noy A, Pérez A, Faustino I, Hospital A, Walther J, Andrio P, Goñi R, Balaceanu A, Portella G, Battistini F, Gelpí J L, González C, Vendruscolo M, Laughton C A, Harris S A, Case D A and Orozco M 2015 Nat. Methods 13 55 [43] Lu T and Chen F 2012 J. Comput. Chem. 33 580 [44] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33 [45] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 [46] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101 [47] Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684 [48] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182 [49] Wang C, Greene D, Xiao L, Qi R and Luo R 2018 Front Mol. Biosci. 4 87 [50] Ding H M, Yin Y W, Ni S D, Sheng Y J and Ma Y Q 2021 Chin. Phys. Lett. 38 18701 [51] Chen Y Q, Sheng Y J, Ding H M and Ma Y Q 2022 Chin. Phys. B 31 048701 [52] Yan Z S, Xu Y, Ding H M and Ma Y Q 2022 Chin. Phys. Lett. 39 108701 [53] Baker N A, Sept D, Joseph S, Holst M J and McCammon J A 2001 Proc. Natl. Acad. Sci. USA 98 10037 [54] Elder R M and Jayaraman A 2013 Soft Matter 9 11521 [55] Chen H, Meisburger S P, Pabit S A, Sutton J L, Webb W W and Pollack L 2012 Proc. Natl. Acad. Sci. USA 109 799 [56] Barger J P and Dillon P F 2020 Electrophoresis 41 1170 [57] Mao Y, Du Y, Cang X, Wang J, Chen Z, Yang H and Jiang H 2013 J. Phys. Chem. B 117 850 [58] Abhinav, Jurkiewicz P, Hof M, Allolio C and Sykora J 2022 Biomolecules 12 1894 [59] Tao Z, Yunguang Q, Qichao L, Xi C, Lifen Z, Xin Y, Bo P, Hualiang J and Huaiyu Y 2019 Acta Physico-Chimica Sinica 35 840 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|