CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts |
Su-Yu Xu(徐宿雨)1, Miao Yu(于淼)1,†, Dong-Yang Yuan(袁东阳)2, Bo Peng(彭博)1, Lei Yuan(元磊)1, Yu-Ming Zhang(张玉明)1, and Ren-Xu Jia(贾仁需)1,‡ |
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 The 13 th Research Institute China Electronics Technology Group Corporation, Shijiazhuang 050051, China |
|
|
Abstract The formation of low-resistance Ohmic contacts in Ga2O3 is crucial for high-performance electronic devices. Conventionally, a titanium/gold (Ti/Au) electrode is rapidly annealed to achieve Ohmic contacts, resulting in mutual diffusion of atoms at the interface. However, the specific role of diffusing elements in Ohmic contact formation remains unclear. In this work, we investigate the contribution of oxygen atom diffusion to the formation of Ohmic contacts in Ga2O3. We prepare a Ti/Au electrode on a single crystal substrate and conduct a series of electrical and structural characterizations. Using density functional theory, we construct a model of the interface and calculate the charge density, partial density of states, planar electrostatic potential energy, and I—V characteristics. Our results demonstrate that the oxygen atom diffusion effectively reduces the interface barrier, leading to low-resistance Ohmic contacts in Ga2O3. These findings provide valuable insights into the underlying mechanisms of Ohmic contact formation and highlight the importance of considering the oxygen atom diffusion in the design of Ga2O3-based electronic devices.
|
Received: 02 August 2023
Revised: 18 September 2023
Accepted manuscript online: 07 October 2023
|
PACS:
|
73.61.Le
|
(Other inorganic semiconductors)
|
|
73.40.Ns
|
(Metal-nonmetal contacts)
|
|
66.30.J-
|
(Diffusion of impurities ?)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 61874084, 61974119, and U21A20501). |
Corresponding Authors:
Miao Yu, Ren-Xu Jia
E-mail: myuxidian@163.com;rxjia@mail.xidian.edu.cn
|
Cite this article:
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需) Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts 2024 Chin. Phys. B 33 017302
|
[1] Guo D, Guo Q, Chen Z, Wu Z, Li P and Tang W 2016 J. Appl. Phys. 55 1202 [6] Ueda N, Hosono H, Waseda R and Kawazoe H 1997 Appl. Phys. Lett. 70 3561 [7] Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T and Aoki K 2008 Appl. Phys. Lett. 92 202120 [8] Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K and Shishido T 2007 Phys. Status Solidi C 4 2310 [9] Ohira S, Suzuki N, Arai N, Tanaka M, Sugawara T, Nakajima K and Shishido T 2008 Thin Solid Films 516 5763 [10] Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K and Speck J S 2017 Appl. Phys. Express 10 041102 [11] Hwang W S, Verma A, Peelaers H, Protasenko V, Rouvimov S, Seabaugh A, Haensch W, de Walle C V, Galazka Z, Albrecht M, Fornari R and Jena D 2014 Appl. Phys. Lett. 104 203111 [12] Higashiwaki M, Sasaki K, Kamimura T, Wong M H and Krishnamurthy D 2013 Appl. Phys. Lett. 103 123511 [13] Chang P C, Fan Z, Tseng W Y, Rajagopal A and Lu J G 2005 Appl. Phys. Lett. 87 222102 [14] Farzana E, Zhang Z, Paul P K, Arehart A R and Ringel S A 2017 Appl. Phys. Lett. 110 202102 [15] Mann D, Javey A, Kong J, Wang Q and Dai H 2003 Nano Lett. 3 1541 [16] English C D, Shine G, Dorgan V E, Saraswat K C and Pop E 2016 Nano Lett. 16 3824 [17] Yao Y, Davis R F and Porter L M 2017 J. Electron. Mater. 46 2053 [18] Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C, Lu H L and Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127 [19] Xia Z, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y, Brenner M, Lodha S and Rajan S 2018 IEEE Electron Dev. Lett. 39 568 [20] Carey P H, Yang J, Ren F, Hays D C, Pearton S J, Jang S, Kuramata A and Kravchenko I I 2017 AIP Adv. 7 095313 [21] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Express 6 086502 [22] Lee M H and Peterson R L 2019 APL Mater. 7 022524 [23] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401 [24] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39 [25] Reeves G K and Harrison H B 1982 IEEE Electron Dev. Lett. 3 111 [26] Kurtz R L and Henrich V E 1998 Surf. Sci. Spectra 5 179 [27] Egerton R F 2008 Rep. Prog. Phys. 72 016502 [28] Hofer F, Schmidt F, Grogger W and Kothleitner G 2015 Proceedings of the IOP Conference Series:Materials Science and Engineering (Portorož:IOP Publishing Ltd) pp. 3-7 [29] Henderson G S, Liu X and Fleet M E 2002 Phys. Chem. Miner. 29 32 [30] Matsumoto T, Aoki M, Kinoshita A and Aono T 1974 J. Appl. Phys. 13 1578 [31] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203 [32] Dang J N, Zheng S W, Chen L and Zheng T 2019 Chin. Phys. B 28 016301 [33] Greenwood N N and Earnshaw A 2012 Elements (Que) (Elsevier) [34] Hou J, Guo R, Su J, Du Y, Lin Z, Zhang J, Hao Y and Chang J 2021 Phys. Chem. Chem. Phys. 23 5975 [35] Stradi D, Martinez U, Blom A, Brandbyge M and Stokbro K 2016 Phys. Rev. B 93 155302 [36] Smidstrup S, Stradi D, Wellendorff J, Khomyakov P A, Vej-Hansen U G, Lee M E, Ghosh T, Jonsson E, Jonsson H and Stokbro K 2017 Phys. Rev. B 96 195309 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|