Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 058502    DOI: 10.1088/1674-1056/acb75b
RAPID COMMUNICATION Prev   Next  

One ε-Ga2O3-based solar-blind Schottky photodetector emphasizing high photocurrent gain and photocurrent-intensity linearity

Yue-Hua An(安跃华)1, Zhen-Sen Gao(高震森)2,†, Yu Guo(郭雨)1, Shao-Hui Zhang(张少辉)4, Zeng Liu(刘增)3,‡, and Wei-Hua Tang(唐为华)3,§
1 School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
2 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
3 Innovation Center for Gallium Oxide Semiconductor(IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  The $\varepsilon $-Ga$_{2}$O$_{3}$ thin film was grown on sapphire substrate by using metalorganic chemical vapor deposition (MOCVD) method, and then was used to fabricate a deep-ultraviolet (DUV) photodetector (PD). The $\varepsilon $-Ga$_{2}$O$_{3}$ thin film shown good crystal quality and decent surface morphology. Irradiated by a 254-nm DUV light, the photodetector displayed good optoelectronic performance and high wavelength selectivity, such as photoresponsivity ($R$) of 175.69 A/W, detectivity ($D^{\ast }$) of $2.46\times 10^{15}$ Jones, external quantum efficiency (EQE) of $8.6\times 10^{4}{\%}$ and good photocurrent-intensity linearity, suggesting decent DUV photosensing performance. At 5 V and under illumination with light intensity of 800 μW/cm$^{2}$, the photocurrent gain is as high as 859 owing to the recycling gain mechanism and delayed carrier recombination; and the photocurrent gain decreases as the incident light intensity increases because of the recombination of photogenerated carriers by the large photon flux.
Keywords:  metastable Ga2O3      photocurrent gain      linearity      DUV detection  
Received:  11 September 2022      Revised:  13 January 2023      Accepted manuscript online:  31 January 2023
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: Project supported by the National Natural Science Foundation of China (Ganrt No. 62004047).
Corresponding Authors:  Zhen-Sen Gao, Zeng Liu, Wei-Hua Tang     E-mail:  gaozhensen@gdut.edu.cn;zengliu@njupt.edu.cn;whtang@njupt.edu.cn

Cite this article: 

Yue-Hua An(安跃华), Zhen-Sen Gao(高震森), Yu Guo(郭雨), Shao-Hui Zhang(张少辉), Zeng Liu(刘增), and Wei-Hua Tang(唐为华) One ε-Ga2O3-based solar-blind Schottky photodetector emphasizing high photocurrent gain and photocurrent-intensity linearity 2023 Chin. Phys. B 32 058502

[1] Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M and Simmons J A 2017 Adv. Electron. Mater. 4 1600501
[2] Hudgins J L, Simin G S, Santi E and Khan M A 2003 IEEE Trans. Power Electron. 18 907
[3] Chen X, Ren F, Gu S and Ye J 2019 Photon. Res. 7 381
[4] Liu Z, Li P, Zhi Y, Wang X, Chu X and Tang W 2019 Chin. Phys. B 28 017105
[5] Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y and Tang W 2022 Chin. Phys. B 31 088503
[6] Tippins H H 1965 Phys. Rev. 140 A316
[7] Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T and Zhang W 2022 Adv. Opt. Mater. 10 2102055
[8] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G and Tang W H 2021 IEEE Trans. Electron Dev. 68 3435
[9] Zhou X, Zhang X, He T, Ma Y, Zhang L, Chen T, Wei X, Tang W, Fan Y, Cai Y, Zhang B and Zhang X 2021 J. Phys. D: Appl. Phys. 54 445103
[10] Liu Z, Zhang M, Yang L, Li S, Zhang S, Li K, Li P, Guo Y and Tang W 2022 Semicond. Sci. Technol. 37 015001
[11] Li Z, Feng Z, Xu Y, Feng Q, Zhu W, Chen D, Zhou H, Zhang J, Zhang C and Hao Y 2022 IEEE Trans. Electron Dev. 69 1143
[12] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P and Tang W 2019 J. Mater. Chem. C 7 13920
[13] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P and Tang W 2020 J. Mater. Chem. C 8 5071
[14] Jiang W, Liu Z, Li S, Yan Z, Lu C, Li P, Guo Y and Tang W 2021 IEEE Sensors J. 21 18663
[15] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L and Shen D 2021 J. Mater. Chem. C 9 4039
[16] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S and Liu M 2020 ACS Photon. 7 812
[17] Zhou H, Cong L, Ma J, Li B, Chen M, Xu H and Liu Y 2019 J. Mater. Chem. C 7 13149
[18] Alfaraj N, Li K H, Alawein M, Kang C H, Braic L, Zoita N C, Kiss A E, Ng T K and Ooi B S 2021 Adv. Mater. Technol. 6 2100142
[19] Zheng W, Lin R, Zhang D, Jia L, Ji X and Huang F 2018 Adv. Opt. Mater. 6 1800697
[20] Liu Z, Huang Y, Zhang C, Wang J, Li H, Wu Z, Li P and Tang W 2020 J. Phys. D: Appl. Phys. 53 295109
[21] Liu Z, Huang Y, Li H, Zhang C, Jiang W, Guo D, Wu Z, Li P and Tang W 2020 Vacuum 177 109425
[22] Li S, Yue J Y, Lu C, Yan Z Y, Liu Z, Li P G, Guo D Y, Wu Z P, Guo Y F and Tang W H 2022 Sci. China Tech. Sci. 65 704
[23] Wang Z, Gong H, Meng C, Yu C, Sun X, Zhang C, Ji X, Ren F, Gu S, Zheng Y, Zhang R and Ye J 2022 IEEE Trans. Electron Dev. 69 981
[24] Katz O, Bahir G and Salzman J 2004 Appl. Phys. Lett. 84 4092
[25] Morgan B J and Madden P A 2011 Phys. Rev. Lett. 107 206102
[26] Mezzadri F, Calestani G, Boschi F, Delmonte D, Bosi M and Fornari F 2016 Inorg. Chem. 55 12079
[27] Chen Z, Li Z, Zhuo Y, Chen W, Ma X, Pei Y and Wang G 2018 Appl. Phys. Express 11 101101
[28] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D: Appl. Phys. 53 085105
[29] Thomson G W 1946 Chem. Rev. 38 1
[30] Yang J, Sparks Z, Ren F, Pearton S J and Tadjer M J 2018 J. Vac. Sci. Technol. B 36 061201
[31] Schultz T, Vogt S, Schlupp P, von Wenckstern H, Koch N and Grundmann M 2018 Phys. Rev. Appl. 9 064001
[32] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P and Tang W 2021 Phys. Scr. 96 125823
[33] Zhang S, Liu Z, Liu Y, Zhi Y, Li P, Wu Z and Tang W 2021 Micromachines 12 259
[34] Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y and Tang W 2022 IEEE Trans. Electron Dev. 69 5595
[35] Taylor G W and Simmons J G 1972 J. Non-Cryst. Solids 8-10 940
[36] Liu N, Fang G, Zeng W, Zhou H, Cheng F, Zheng Q, Yuan L, Zou X and Zhao X 2010 ACS Appl. Mater. Interfaces 2 1973
[37] Zhou S, Zhang H, Peng X, Liu H, Li H, Xiong Y, Li W, Yang P A, Ye L and Kong C 2022 Adv. Photon. Res. 3 2200192
[38] Yang Y, Zhu H, Wang L, Jiang Y, Wang T, Liu C, Li B, Tang W, Wu Z, Yang Z and Li D 2022 Materials & Design 221 110944
[39] Lu Y, Krishna S, Tang X, Babatain W, Hassine M B, Liao C H, Xiao N, Liu Z and Li X 2022 ACS Appl. Mater. Interfaces 14 34844
[40] Zhou X, Zhang X, He T, Ma Y, Zhang L, Chen T, Wei X, Tang W, Fan Y, Cai Y, Zhang B and Zhang X 2021 J. Phys. D: Appl. Phys. 54 445103
[41] Garrido J A, Monroy E, Izpura I and Muñoz E 1998 Semicond. Sci. Technol. 13 563
[42] Soci C, Zhang A, Bao X Y, Kim H, Lo Y and Wang D 2010 J. Nanosci. Nanotechnol. 10 1430
[43] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
[44] Li C, Bando Y, Liao M, Koide Y and Golberg D 2010 Appl. Phys. Lett. 97 161102
[1] Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity
Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2023, 32(4): 044301.
[2] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[5] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[6] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[7] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[8] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[9] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[10] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[11] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[12] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[13] Design and investigation of dopingless double-gate line tunneling transistor: Analog performance, linearity, and harmonic distortion analysis
Hui-Fang Xu(许会芳)†, Xin-Feng Han(韩新风), and Wen Sun(孙雯). Chin. Phys. B, 2020, 29(10): 108502.
[14] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[15] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
No Suggested Reading articles found!