1 School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; 2 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China; 3 Innovation Center for Gallium Oxide Semiconductor(IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 4 Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract The -GaO thin film was grown on sapphire substrate by using metalorganic chemical vapor deposition (MOCVD) method, and then was used to fabricate a deep-ultraviolet (DUV) photodetector (PD). The -GaO thin film shown good crystal quality and decent surface morphology. Irradiated by a 254-nm DUV light, the photodetector displayed good optoelectronic performance and high wavelength selectivity, such as photoresponsivity () of 175.69 A/W, detectivity () of Jones, external quantum efficiency (EQE) of and good photocurrent-intensity linearity, suggesting decent DUV photosensing performance. At 5 V and under illumination with light intensity of 800 μW/cm, the photocurrent gain is as high as 859 owing to the recycling gain mechanism and delayed carrier recombination; and the photocurrent gain decreases as the incident light intensity increases because of the recombination of photogenerated carriers by the large photon flux.
Yue-Hua An(安跃华), Zhen-Sen Gao(高震森), Yu Guo(郭雨), Shao-Hui Zhang(张少辉), Zeng Liu(刘增), and Wei-Hua Tang(唐为华) One ε-Ga2O3-based solar-blind Schottky photodetector emphasizing high photocurrent gain and photocurrent-intensity linearity 2023 Chin. Phys. B 32 058502
[1] Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M and Simmons J A 2017 Adv. Electron. Mater.4 1600501 [2] Hudgins J L, Simin G S, Santi E and Khan M A 2003 IEEE Trans. Power Electron.18 907 [3] Chen X, Ren F, Gu S and Ye J 2019 Photon. Res.7 381 [4] Liu Z, Li P, Zhi Y, Wang X, Chu X and Tang W 2019 Chin. Phys. B28 017105 [5] Liu Z, Zhi Y, Zhang M, Yang L, Li S, Yan Z, Zhang S, Guo D, Li P, Guo Y and Tang W 2022 Chin. Phys. B31 088503 [6] Tippins H H 1965 Phys. Rev.140 A316 [7] Qian L, Li W, Gu Z, Tian J, Huang X, Lai P T and Zhang W 2022 Adv. Opt. Mater.10 2102055 [8] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G and Tang W H 2021 IEEE Trans. Electron Dev.68 3435 [9] Zhou X, Zhang X, He T, Ma Y, Zhang L, Chen T, Wei X, Tang W, Fan Y, Cai Y, Zhang B and Zhang X 2021 J. Phys. D: Appl. Phys.54 445103 [10] Liu Z, Zhang M, Yang L, Li S, Zhang S, Li K, Li P, Guo Y and Tang W 2022 Semicond. Sci. Technol.37 015001 [11] Li Z, Feng Z, Xu Y, Feng Q, Zhu W, Chen D, Zhou H, Zhang J, Zhang C and Hao Y 2022 IEEE Trans. Electron Dev.69 1143 [12] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P and Tang W 2019 J. Mater. Chem. C7 13920 [13] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P and Tang W 2020 J. Mater. Chem. C8 5071 [14] Jiang W, Liu Z, Li S, Yan Z, Lu C, Li P, Guo Y and Tang W 2021 IEEE Sensors J.21 18663 [15] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L and Shen D 2021 J. Mater. Chem. C9 4039 [16] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S and Liu M 2020 ACS Photon.7 812 [17] Zhou H, Cong L, Ma J, Li B, Chen M, Xu H and Liu Y 2019 J. Mater. Chem. C7 13149 [18] Alfaraj N, Li K H, Alawein M, Kang C H, Braic L, Zoita N C, Kiss A E, Ng T K and Ooi B S 2021 Adv. Mater. Technol.6 2100142 [19] Zheng W, Lin R, Zhang D, Jia L, Ji X and Huang F 2018 Adv. Opt. Mater.6 1800697 [20] Liu Z, Huang Y, Zhang C, Wang J, Li H, Wu Z, Li P and Tang W 2020 J. Phys. D: Appl. Phys.53 295109 [21] Liu Z, Huang Y, Li H, Zhang C, Jiang W, Guo D, Wu Z, Li P and Tang W 2020 Vacuum177 109425 [22] Li S, Yue J Y, Lu C, Yan Z Y, Liu Z, Li P G, Guo D Y, Wu Z P, Guo Y F and Tang W H 2022 Sci. China Tech. Sci.65 704 [23] Wang Z, Gong H, Meng C, Yu C, Sun X, Zhang C, Ji X, Ren F, Gu S, Zheng Y, Zhang R and Ye J 2022 IEEE Trans. Electron Dev.69 981 [24] Katz O, Bahir G and Salzman J 2004 Appl. Phys. Lett.84 4092 [25] Morgan B J and Madden P A 2011 Phys. Rev. Lett.107 206102 [26] Mezzadri F, Calestani G, Boschi F, Delmonte D, Bosi M and Fornari F 2016 Inorg. Chem.55 12079 [27] Chen Z, Li Z, Zhuo Y, Chen W, Ma X, Pei Y and Wang G 2018 Appl. Phys. Express11 101101 [28] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D: Appl. Phys.53 085105 [29] Thomson G W 1946 Chem. Rev.38 1 [30] Yang J, Sparks Z, Ren F, Pearton S J and Tadjer M J 2018 J. Vac. Sci. Technol. B36 061201 [31] Schultz T, Vogt S, Schlupp P, von Wenckstern H, Koch N and Grundmann M 2018 Phys. Rev. Appl.9 064001 [32] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P and Tang W 2021 Phys. Scr.96 125823 [33] Zhang S, Liu Z, Liu Y, Zhi Y, Li P, Wu Z and Tang W 2021 Micromachines12 259 [34] Liu Z, Du L, Zhang S, Li L, Xi Z, Tang J, Fang J, Zhang M, Yang L, Li S, Li P, Guo Y and Tang W 2022 IEEE Trans. Electron Dev.69 5595 [35] Taylor G W and Simmons J G 1972 J. Non-Cryst. Solids8-10 940 [36] Liu N, Fang G, Zeng W, Zhou H, Cheng F, Zheng Q, Yuan L, Zou X and Zhao X 2010 ACS Appl. Mater. Interfaces2 1973 [37] Zhou S, Zhang H, Peng X, Liu H, Li H, Xiong Y, Li W, Yang P A, Ye L and Kong C 2022 Adv. Photon. Res.3 2200192 [38] Yang Y, Zhu H, Wang L, Jiang Y, Wang T, Liu C, Li B, Tang W, Wu Z, Yang Z and Li D 2022 Materials & Design 221 110944 [39] Lu Y, Krishna S, Tang X, Babatain W, Hassine M B, Liao C H, Xiao N, Liu Z and Li X 2022 ACS Appl. Mater. Interfaces14 34844 [40] Zhou X, Zhang X, He T, Ma Y, Zhang L, Chen T, Wei X, Tang W, Fan Y, Cai Y, Zhang B and Zhang X 2021 J. Phys. D: Appl. Phys.54 445103 [41] Garrido J A, Monroy E, Izpura I and Muñoz E 1998 Semicond. Sci. Technol.13 563 [42] Soci C, Zhang A, Bao X Y, Kim H, Lo Y and Wang D 2010 J. Nanosci. Nanotechnol.10 1430 [43] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express23 13554 [44] Li C, Bando Y, Liao M, Koide Y and Golberg D 2010 Appl. Phys. Lett.97 161102
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.