Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017301    DOI: 10.1088/1674-1056/ad09ab
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Design and simulation of an accelerometer based on NV center spin—strain coupling

Lu-Min Ji(季鲁敏), Li-Ye Zhao(赵立业), and Yu-Hai Wang(王裕海)
Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Department of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
Abstract  The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms. In this paper, an acceleration sensing scheme based on NV spin—strain coupling is proposed, which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes. Through the finite element simulation, it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure optimization. The required power is at the sub-μW level, corresponding to a noise-limited sensitivity of ${6.7\times }{{10}}^{{-5}}~{\rm g}/\sqrt {\rm Hz} $. Compared with other types of accelerometers, this micro-sized diamond sensor proposed here has low power consumption, exquisite sensitivity, and integration potential. This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.
Keywords:  nitrogen-vacancy (NV) accelerometer      spin—strain      diamond  
Received:  13 September 2023      Revised:  18 October 2023      Accepted manuscript online:  04 November 2023
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  87.80.Ek (Mechanical and micromechanical techniques)  
  07.10.Cm (Micromechanical devices and systems)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071118) and the Primary Research & Development Plan of Jiangsu Province (Grant No. BE2021004-3).
Corresponding Authors:  Li-Ye Zhao     E-mail:  liyezhao@seu.edu.cn

Cite this article: 

Lu-Min Ji(季鲁敏), Li-Ye Zhao(赵立业), and Yu-Hai Wang(王裕海) Design and simulation of an accelerometer based on NV center spin—strain coupling 2024 Chin. Phys. B 33 017301

[1] Rajendran S, Zobrist N, Sushkov A O, Walsworth R and Lukin M 2017 Phys. Rev. D 96 035009
[2] Jarmola A, Lourette S, Acosta V M, Birdwell A G, Blümler P, Budker D, Ivanov T and Malinovsky V S 2021 Sci. Adv. 7 1
[3] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[4] Rath P, Khasminskaya S, Nebel C, Wild C and Pernice W H P 2013 Nat. Commun. 4 1690
[5] Lee D, Lee K W, Cady J V, Ovartchaiyapong P and Jayich A C B B 2017 J. Opt. 19 033001
[6] Adiga V P, Sumant A V, Suresh S, Gudeman C, Auciello O, Carlisle J A and Carpick R W 2009 Phys. Rev. B 79 245403
[7] Etaki S, Poot M, Mahboob I, Onomitsu K, Yamaguchi H and Van Der Zant H S J 2008 Nat. Phys. 4 785
[8] Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J and Sillanpää M A 2012 Nature 494 211
[9] Jöckel A, Faber A, Kampschulte T, Korppi M, Rakher M T and Treutlein P 2015 Nat. Nanotechnol. 10 55
[10] Camerer S, Korppi M, Jöckel A, Hunger D, Hänsch T W and Treutlein P 2011 Phys. Rev. Lett. 107 223001
[11] Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P and Seidelin S 2011 Nat. Phys. 7 879
[12] Kolkowitz S, Bleszynski Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E and Lukin M D 2012 Science 335 1603
[13] Barfuss A, Kasperczyk M, Kölbl J and Maletinsky P 2019 Phys. Rev. B 99 174102
[14] Kumar P and Bhattacharya M 2017 Frontiers in Optics 2017 p. FTh3B.2
[15] Chen X Y Y and Yin Z Q Q 2018 Opt. Express 26 31577
[16] Xiao K W, Zhou L M, Yin Z Q and Zhao N 2018 Commun. Theor. Phys. 70 97
[17] Be'Er O, Ohadi H, Del Valle-Inclan Redondo Y, Ramsay A J, Tsintzos S I, Hatzopoulos Z, Savvidis P G and Baumberg J J 2017 Appl. Phys. Lett. 111 261104
[18] Bai R, Zhu X, Yang F, Gao T, Wang Z, Yu L, Wang J, Zhou L and Du G 2022 Chin. Phys. B 31 074203
[19] Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nat. Phys. 7 459
[20] Doherty M W, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B and Hollenberg L C L 2012 Phys. Rev. B 85 205203
[21] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1
[22] Zhangqi Y I N, Nan Z, Tongcang L I, Yin Z, Zhao N and Li T 2015 Sci. China Phys. Mech. Astron. 58 1
[23] Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T and Lončar M 2016 Phys. Rev. Appl. 5 034010
[24] Lee K W, Lee D, Ovartchaiyapong P, Minguzzi J, Maze J R and Bleszynski Jayich A C 2016 Phys. Rev. Appl. 6 034005
[25] Broadway D A, Johnson B C, Barson M S J, Lillie S E, Dontschuk N, McCloskey D J, Tsai A, Teraji T, Simpson D A, Stacey A, McCallum J C, Bradby J E, Doherty M W, Hollenberg L C L and Tetienne J P 2019 Nano Lett. 19 4543
[26] Shandilya P K, Flagan S, Carvalho N C, Zohari E, Kavatamane V K, Losby J E and Barclay P E 2022 J. Light. Technol. 40 7538
[27] Burek M J, Ramos D, Patel P, Frank I W and Lončar M 2013 Appl. Phys. Lett. 103 131904
[28] Kara V, Sohn Y I, Atikian H, Yakhot V, Lončar M and Ekinci K L 2015 Nano Lett. 15 8070
[29] Heidrich N, Iankov D, Hees J, Pletschen W, Sah R E, Kirste L, Zuerbig V, Nebel C, Ambacher O and Lebedev V 2013 J. Micromechanics Microengineering 23 125017
[30] Ovartchaiyapong P, Lee K W, Myers B A and Jayich A C B 2014 Nat. Commun. 5 4429
[31] Barfuss A, Teissier J, Neu E, Nunnenkamp A and Maletinsky P 2015 Nat. Phys. 11 820
[32] Teissier J, Barfuss A, Appel P, Neu E and Maletinsky P 2014 Phys. Rev. Lett. 113 020503
[33] Barson M S J, Peddibhotla P, Ovartchaiyapong P, Ganesan K, Taylor R L, Gebert M, Mielens Z, Koslowski B, Simpson D A, McGuinness L P, McCallum J, Prawer S, Onoda S, Ohshima T, Bleszynski Jayich A C, Jelezko F, Manson N B and Doherty M W 2017 Nano Lett. 17 1496
[34] Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P and Lukin M D 2013 Phys. Rev. Lett. 110 156402
[35] Brueckner K, Niebelschuetz F, Tonisch K, Foerster C, Cimalla V, Stephan R, Pezoldt J, Stauden T, Ambacher O and Hein M A 2011 Phys. Status Solidi Appl. Mater. Sci. 208 357
[36] MacQuarrie E R, Otten M, Gray S K and Fuchs G D 2017 Nat. Commun. 8 14358
[37] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 15004
[38] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[39] Klein C A and Cardinale G F 1993 Diam. Relat. Mater. 2 918
[40] Ali Momenzadeh S, de Oliveira F F, Neumann P, Bhaktavatsala Rao D D, Denisenko A, Amjadi M, Chu Z, Yang S, Manson N B, Doherty M W and Wrachtrup J 2016 Phys. Rev. Appl. 6 024026
[41] Zhang J Y, Chen L L, Cheng Y, Luo Q, Shu Y B, Duan X C, Zhou M K and Hu Z K 2020 Chin. Phys. B 29 093702
[42] Yücetaş M, Pulkkinen M, Kalanti A, Salomaa J, Aaltonen L and Halonen K 2012 IEEE J. Solid-State Circuits 47 1721
[43] Petkov V P, Balachandran G K and Beintner J 2014 IEEE J. Solid-State Circuits 49 262
[44] Zhao Y, Zhao J, Wang X, Xia G M, Qiu A P, Su Y and Xu Y P 2015 IEEE J. Solid-State Circuits 50 2113
[45] Bar-Gill N, Pham L M, Jarmola A, Budker D and Walsworth R L 2013 Nat. Commun. 4 1743
[1] Effect of surface modification on the radiation stability of diamond ohmic contacts
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明). Chin. Phys. B, 2024, 33(2): 026801.
[2] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[3] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[4] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[5] High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure
Ying Zhu(朱盈), Wang Lin(林旺), Dong-Shuai Li(李东帅), Liu-An Li(李柳暗), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2023, 32(8): 088101.
[6] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[7] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[8] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[9] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[10] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
Jia-Hao Xiong(熊佳豪), Zi-Jun Qi(戚梓俊), Kang Liang(梁康), Xiang Sun(孙祥), Zhan-Peng Sun(孙展鹏), Qi-Jun Wang(汪启军), Li-Wei Chen(陈黎玮), Gai Wu(吴改), and Wei Shen(沈威). Chin. Phys. B, 2023, 32(12): 128101.
[11] Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure
Yang Liu(刘杨), Zhiwen Wang(王志文), Bowei Li(李博维), Hongyu Zhao(赵洪宇), Shengxue Wang(王胜学), Liangchao Chen(陈良超), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2023, 32(12): 128102.
[12] Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films
Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(11): 118102.
[13] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[14] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[15] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
No Suggested Reading articles found!