Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016106    DOI: 10.1088/1674-1056/acd3e1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices

Bin Zhang(张彬)1, Hao Jiang(姜昊)2, Xiao-Dong Xu(徐晓东)2, Tao Ying(应涛)1, Zhong-Li Liu(刘中利)2, Wei-Qi Li(李伟奇)1,3, Jian-Qun Yang(杨剑群)2, and Xing-Ji Li(李兴冀)2,†
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3 State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi'an 710024, China
Abstract  Bipolar junction transistors (BJTs) are often used in spacecraft due to their excellent working characteristics. However, the complex space radiation environment induces primary knock-on atoms (PKAs) in BJTs through collisions, resulting in hard-to-recover displacement damage and affecting the performance of electronic components. In this paper, the properties of PKAs induced by typical space heavy ions (C, N, O, Fe) in BJTs are investigated using Monte Carlo simulations. The simulated results show that the energy spectrum of ion-induced PKAs is primarily concentrated in the low-energy range (17 eV—100 eV) and displays similar features across all tested ions. The PKAs induced by the collision of energetic ions have large forward scattering angles, mainly around 88°. Moreover, the distribution of PKAs within a transistor as a function of depth displays a peak characteristic, and the peak position is linearly proportional to the incident energy at a certain energy range. These simulation outcomes serve as crucial theoretical support for long-term semiconductor material defect evolution and ground testing of semiconductor devices.
Keywords:  Monte Carlo simulation      primary knock-on atom (PKA)      space-heavy ion      radiation damage  
Received:  23 February 2023      Revised:  10 May 2023      Accepted manuscript online:  10 May 2023
PACS:  61.82.Fk (Semiconductors)  
  61.80.Jh (Ion radiation effects)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974091, 51973046, U22B2044, and 21673025) and the Open Projects of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR2020).
Corresponding Authors:  Xing-Ji Li     E-mail:  lxj0218@hit.edu.cn

Cite this article: 

Bin Zhang(张彬), Hao Jiang(姜昊), Xiao-Dong Xu(徐晓东), Tao Ying(应涛), Zhong-Li Liu(刘中利), Wei-Qi Li(李伟奇), Jian-Qun Yang(杨剑群), and Xing-Ji Li(李兴冀) Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices 2024 Chin. Phys. B 33 016106

[1] Ye B, Mo L H, Liu T, Luo J, Li D Q, Zhao P X, Cai C, He Z, Sun Y M, Hou M D and Liu J 2020 Chin. Phys. B 29 26101
[2] Li X J, Yang J Q, Liu C M, Li P W, Zhao Y L and Liu G Q 2017 IEEE Transactions on Nuclear Science 64 976
[3] Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M 2010 Chin. Phys. B 19 066103
[4] Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z and He S Y 2010 IEEE Transactions on Nuclear Science 57 831
[5] Srour J R and Palko J W 2013 IEEE Transactions on Nuclear Science 60 1740
[6] He H, He C H, Zhang J H, Liao W L, Zang H, Li Y H and Liu W B 2020 Nuclear Engineering and Technology 52 1537
[7] Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T and He C H 2021 Acta Phys. Sin. 70 172401 (in Chinese)
[8] Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M and Weaver B D 1999 IEEE Transactions on Nuclear Science 46 1595
[9] Dale C, Marshall P, Cummings B, Shamey L and Holland A 1993 IEEE Transactions on Nuclear Science 40 1628
[10] Srour J R, Marshall C J and Marshall P W 2003 IEEE Transactions on Nuclear Science 50 653
[11] Hamedani A, Byggmastar J, Djurabekova F, Alahyarizadeh G, Ghaderi R, Minuchehr A and Nordlund K 2020 Materials Research Letters 8 364
[12] Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M and Paillet P 2017 IEEE Transactions on Nuclear Science 64 133
[13] Liu Y, Zhu T F, Yao J X and OuYang X P 2019 Sensors (Basel, Switzerland) 19 1767
[14] Shen S S, He C H and Li Y H 2018 Acta Phys. Sin. 67 182401 (in Chinese)
[15] Castellina A and Donato F 2013 Planets, Stars and Stellar Systems Volume 5:Galactic Structure and Stellar Populations (Dordrecht:Springer) p. 729
[16] Ziegler J F, Ziegler M D and Biersack J P 2010 Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 268 1818
[17] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Transactions on Nuclear Science 53 270
[18] Santin G, Ivanchenko V, Evans H, Nieminen P and Daly E 2005 IEEE Transactions on Nuclear Science 52 2294
[19] Ivanchenko V, Apostolakis J, Bagulya A, et al. 2011 Progress in Nuclear Science and Technology 2 898
[20] Mendenhall M H and Weller R A 2005 Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 227 420
[21] Liu H C, Ge W and Wang Y G 2020 Radiation Effects and Defects in Solids 176 441
[22] Cai G B, Yang L and Guo G Q 2017 Europhys. Lett. 117 16001
[23] Krasheninnikov A V, Miyamoto Y and Tománek D 2007 Phys. Rev. Lett. 99 016104
[24] Buchan J T, Robinson M, Christie H J and Roach D L 2015 J. Appl. Phys. 117 245901
[25] Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
[26] Whitlow H J and Nakagawa S T 2007 Nuclear Instruments & Methods in Physics Research 260 468
[1] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[2] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[3] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[4] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[5] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[6] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[7] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[8] Reconstructing in vivo spatially offset Raman spectroscopy of human skin tissue using a GPU-accelerated Monte Carlo platform
Yun-He Zhang(张云鹤), Huan-Zheng Zhu(朱桓正), Yong-Jiang Dong(董泳江), Jia Zeng(曾佳), Xin-Peng Han(韩新鹏), Ivan A. Bratchenko, Fu-Rong Zhang(张富荣), Si-Yuan Xu(许思源), and Shuang Wang(王爽). Chin. Phys. B, 2023, 32(11): 118702.
[9] Proton induced radiation effect of SiC MOSFET under different bias
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Zhi-Feng Lei(雷志锋), Chao Peng(彭超), Wu-Ying Ma(马武英), Di Wang(王迪), Chang-Hao Sun(孙常皓), Feng-Qi Zhang(张凤祁), Zhan-Gang Zhang(张战刚), Ye Yang(杨业), Wei Lv(吕伟), Zhong-Ming Wang(王忠明), Xiang-Li Zhong(钟向丽), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(10): 108503.
[10] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[11] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[12] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[13] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[14] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[15] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
No Suggested Reading articles found!