Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 126101    DOI: 10.1088/1674-1056/ace2b1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural stability and ion migration of Li2MnO3 cathode material under high pressures

Ze-Ren Xie(谢泽仁)1, Si-Si Zhou(周思思)2, Bei-Bei He(贺贝贝)1, Huan-Wen Wang(王欢文)1, Yan-Sheng Gong(公衍生)1, Jun Jin(金俊)1, Xiang-Gong Zhang(张祥功)2, and Rui Wang(汪锐)1,†
1 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
2 Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China
Abstract  Some special fields, such as deep-sea exploration, require batteries and their electrode materials to withstand extremely high pressure. As the cathode material has the highest energy density, Li-excess Mn-based materials are also likely to be utilized in such an environment. However, the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present. Therefore, in this study, we investigate the properties of the matrix material of Li-excess Mn-based material, Li2MnO3, under high pressure. The equation of state, bulk modulus, and steady-state volume of Li2MnO3 are predicted by the method of first principles calculation. The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure. During compression, Li-O bond is more easily compressed than Mn-O bond. The results from the climbing image nudged elastic band (CINEB) method show that the energy barrier of Li+ migration in the lithium layer increases with pressure increasing. Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.
Keywords:  lithium-ion battery      Li2MnO3      high pressure      DFT computation  
Received:  13 April 2023      Revised:  16 June 2023      Accepted manuscript online:  29 June 2023
PACS:  61.50.-f (Structure of bulk crystals)  
  82.47.Aa (Lithium-ion batteries)  
  91.60.Gf (High-pressure behavior)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the Research on High Power Flexible Battery in All Sea Depth, China (Grant No.2020-XXXX-XX-246-00).
Corresponding Authors:  Rui Wang     E-mail:  wangrui@cug.edu.cn

Cite this article: 

Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐) Structural stability and ion migration of Li2MnO3 cathode material under high pressures 2023 Chin. Phys. B 32 126101

[1] Li G, Chen X, Zhou F, Liang Y, Xiao Y, Cao X, Zhang Z, Zhang M, Wu B, Yin S, Xu Y, Fan H, Chen Z, Song W, Yang W, Pan B, Hou J, Zou W, He S, Yang X, Mao G, Jia Z, Zhou H, Li T, Qu S, Xu Z, Huang Z, Luo Y, Xie T, Gu J, Zhu S and Yang W 2021 Nature 591 66
[2] Hein J R, Koschinsky A and Kuhn T 2020 Nature Reviews Earth & Environment 1 158--169
[3] Huang Y, Liu L and Gao M 2020 Solid State Ionics 346 115195
[4] Longo R C, Kong F T, Kc S, Park M S, Yoon J, Yeon D H, Park J H, Doo S G and Cho K 2014 Phys. Chem. Chem. Phys. 16 11233
[5] Xu J, Zhang J, Pollard T P, Li Q, Tan S, Hou S, Wan H, Chen F, He H, Hu E, Xu K, Yang X Q, Borodin O and Wang C 2023 Nature 614 694
[6] Cabana J, Kwon B J and Hu L 2018 Acc. Chem. Res. 51 299
[7] Zhao X and Ceder G 2022 Joule 6 2683
[8] Wen G, Tan L, Lan X, Zhang H, Hu R, Yuan B, Liu J and Zhu M 2021 Sci. China Mater. 64 2683
[9] Bandiello E, Errandonea D, Pellicer-Porres J, Garg A B, Rodriguez-Hernandez P, Munoz A, Martinez-Garcia D, Rao R and Popescu C 2018 Inorg. Chem. 57 10265
[10] Lethole N L, Chauke H R and Ngoepe P E 2019 Comput. Theor. Chem. 1155 67
[11] Dong H, Guo H, He Y, Gao J, Han W, Lu X, Yan S, Yang K, Li H, Chen D and Li H 2017 Solid State Ionics 301 133
[12] Zhang X, Wang M, Wang Y, Zhou S, Yang G, Ren Y, Wang Q, Zhang R, Zheng J, Lu X, Yang W and Chen L 2021 Solid State Ionics 364 115637
[13] Wang S, Liu J, Qie Y, Gong S, Sun Q and Jena P 2018 J. Mater. Chem. A 6 18449
[14] Ashton T E, Laveda J V, MacLaren D A, Baker P J, Porch A, Jones M O and Corr S A 2014 J. Mater. Chem. A 2 6238
[15] Mukai K and Yamada I 2018 Inorganic Chemistry Frontiers 5 1941
[16] Vinckeviciute J, Kitchaev D A and Van der Ven A 2021 Chem. Mater. 33 1625
[17] Hu W, Wang H, Luo W, Xu B and Ouyang C 2020 Solid State Ionics 347 115257
[18] Wang S, Liu J and Sun Q 2017 J. Mater. Chem. A 5 16936
[19] Zhuo Z, Dai K, Qiao R, Wang R, Wu J, Liu Y, Peng J, Chen L, Chuang Y D, Pan F, Shen Z X, Liu G, Li H, Devereaux T P and Yang W 2021 Joule 5 975
[20] Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B and Aurbach D 2018 Adv. Energy Mater. 8 1702397
[21] Zhan C, Cai F, Amine K and Lu J 2017 ACS Energy Lett. 2 1628
[22] Li X, Li X, Monluc L, Chen B, Tang M, Chien P H, Feng X, Hung I, Gan Z, Urban A and Hu Y Y 2022 Adv. Energy Mater. 12 2200427
[23] Wang C, Yang C and Zheng Z 2022 Adv. Sci. 9 2105213
[24] He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X and Peng D L 2021 Adv. Mater. 33 2005937
[25] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H and Chen L 2013 Adv. Energy Mater. 3 1358
[26] He P, Yu H and Zhou H 2012 J. Mater. Chem. 22 3680
[27] Li S, Fu X, Liang Y, Wang S, Zhou X a, Dong H, Tuo K, Gao C and Cui X 2020 ACS Sustainable Chem. Eng. 8 9311
[28] Mukai K, Uyama T and Yamada I 2019 ACS Omega 4 6459
[29] Cheng H, Li Y C, Li G and Li X D 2016 Chin. Phys. Lett. 33 096104
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[32] Tamura T, Ohwaki T, Ito A, Ohsawa Y, Kobayashi R and Ogata S 2012 Modelling and Simulation in Materials Science and Engineering 20 045006
[33] Oertel M, Hempel M, Klähn T and Typel S 2017 Rev. Mod. Phys. 89 015007
[34] Boulineau A, Croguennec L, Delmas C and Weill F 2009 Chem. Mater. 21 4216
[35] Chen H and Islam M S 2016 Chem. Mater. 28 6656
[36] Pulido R, Naveas N, Martín-Palma J R, Graber T, Brito I, Hernández-Montelongo J and Manso Silván M 2022 Chem. Eng. J. 441 136019
[37] Huang Y, He Y, Sheng H, Lu X, Dong H, Samanta S, Dong H, Li X, Kim D Y and Mao H K 2019 Nat. Sci. Rev. 6 239
[38] Xiao R, Li H and Chen L 2012 Chem. Mater. 24 4242
[39] Xie Z, Wu X, Zhang Y, Li G, Ma F, Yan W, Chen Y, Li F and Zhou M 2022 Journal of Electroanalytical Chemistry 922 116762
[40] Jiang Y S, Yu F D, Que L F, Deng L, Xia Y, Ke W, Han Y and Wang Z B 2021 ACS Energy Lett. 6 3836
[41] Serrano-Sevillano J, Carlier D, Saracibar A, Lopez del Amo J M and Casas-Cabanas M 2019 Inorg. Chem. 58 8347
[1] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[2] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[3] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[4] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[5] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[6] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[7] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[8] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[9] Chair-like N66- in AlN3 with high-energy density
Shi-Tai Guo(郭世泰), Zhen-Zhen Xu(徐真真), Yan-Lei Geng(耿延雷), Qi Rui(芮琦), Dian-Chen Du(杜殿臣), Jian-Fu Li(李建福), and Xiao-Li Wang(王晓丽). Chin. Phys. B, 2023, 32(12): 126202.
[10] Influence of carbon sources on the performance of carbon-coated nano-silicon
Lin Wang(王琳), Na Li(李娜), Hao-Sen Chen(陈浩森), and Wei-Li Song(宋维力). Chin. Phys. B, 2023, 32(10): 108201.
[11] First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利). Chin. Phys. B, 2023, 32(10): 107401.
[12] Optimization of thermoelectric properties in elemental tellurium via high pressure
Dongyao Zhao(赵东尧), Manman Yang(杨曼曼), Hairui Sun(孙海瑞), Xin Chen(陈欣), Yongsheng Zhang(张永胜), and Xiaobing Liu(刘晓兵). Chin. Phys. B, 2023, 32(10): 107305.
[13] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[14] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[15] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
No Suggested Reading articles found!