CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural stability and ion migration of Li2MnO3 cathode material under high pressures |
Ze-Ren Xie(谢泽仁)1, Si-Si Zhou(周思思)2, Bei-Bei He(贺贝贝)1, Huan-Wen Wang(王欢文)1, Yan-Sheng Gong(公衍生)1, Jun Jin(金俊)1, Xiang-Gong Zhang(张祥功)2, and Rui Wang(汪锐)1,† |
1 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; 2 Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China |
|
|
Abstract Some special fields, such as deep-sea exploration, require batteries and their electrode materials to withstand extremely high pressure. As the cathode material has the highest energy density, Li-excess Mn-based materials are also likely to be utilized in such an environment. However, the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present. Therefore, in this study, we investigate the properties of the matrix material of Li-excess Mn-based material, Li2MnO3, under high pressure. The equation of state, bulk modulus, and steady-state volume of Li2MnO3 are predicted by the method of first principles calculation. The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure. During compression, Li-O bond is more easily compressed than Mn-O bond. The results from the climbing image nudged elastic band (CINEB) method show that the energy barrier of Li+ migration in the lithium layer increases with pressure increasing. Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.
|
Received: 13 April 2023
Revised: 16 June 2023
Accepted manuscript online: 29 June 2023
|
PACS:
|
61.50.-f
|
(Structure of bulk crystals)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
91.60.Gf
|
(High-pressure behavior)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
Fund: Project supported by the Research on High Power Flexible Battery in All Sea Depth, China (Grant No.2020-XXXX-XX-246-00). |
Corresponding Authors:
Rui Wang
E-mail: wangrui@cug.edu.cn
|
Cite this article:
Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐) Structural stability and ion migration of Li2MnO3 cathode material under high pressures 2023 Chin. Phys. B 32 126101
|
[1] Li G, Chen X, Zhou F, Liang Y, Xiao Y, Cao X, Zhang Z, Zhang M, Wu B, Yin S, Xu Y, Fan H, Chen Z, Song W, Yang W, Pan B, Hou J, Zou W, He S, Yang X, Mao G, Jia Z, Zhou H, Li T, Qu S, Xu Z, Huang Z, Luo Y, Xie T, Gu J, Zhu S and Yang W 2021 Nature 591 66 [2] Hein J R, Koschinsky A and Kuhn T 2020 Nature Reviews Earth & Environment 1 158--169 [3] Huang Y, Liu L and Gao M 2020 Solid State Ionics 346 115195 [4] Longo R C, Kong F T, Kc S, Park M S, Yoon J, Yeon D H, Park J H, Doo S G and Cho K 2014 Phys. Chem. Chem. Phys. 16 11233 [5] Xu J, Zhang J, Pollard T P, Li Q, Tan S, Hou S, Wan H, Chen F, He H, Hu E, Xu K, Yang X Q, Borodin O and Wang C 2023 Nature 614 694 [6] Cabana J, Kwon B J and Hu L 2018 Acc. Chem. Res. 51 299 [7] Zhao X and Ceder G 2022 Joule 6 2683 [8] Wen G, Tan L, Lan X, Zhang H, Hu R, Yuan B, Liu J and Zhu M 2021 Sci. China Mater. 64 2683 [9] Bandiello E, Errandonea D, Pellicer-Porres J, Garg A B, Rodriguez-Hernandez P, Munoz A, Martinez-Garcia D, Rao R and Popescu C 2018 Inorg. Chem. 57 10265 [10] Lethole N L, Chauke H R and Ngoepe P E 2019 Comput. Theor. Chem. 1155 67 [11] Dong H, Guo H, He Y, Gao J, Han W, Lu X, Yan S, Yang K, Li H, Chen D and Li H 2017 Solid State Ionics 301 133 [12] Zhang X, Wang M, Wang Y, Zhou S, Yang G, Ren Y, Wang Q, Zhang R, Zheng J, Lu X, Yang W and Chen L 2021 Solid State Ionics 364 115637 [13] Wang S, Liu J, Qie Y, Gong S, Sun Q and Jena P 2018 J. Mater. Chem. A 6 18449 [14] Ashton T E, Laveda J V, MacLaren D A, Baker P J, Porch A, Jones M O and Corr S A 2014 J. Mater. Chem. A 2 6238 [15] Mukai K and Yamada I 2018 Inorganic Chemistry Frontiers 5 1941 [16] Vinckeviciute J, Kitchaev D A and Van der Ven A 2021 Chem. Mater. 33 1625 [17] Hu W, Wang H, Luo W, Xu B and Ouyang C 2020 Solid State Ionics 347 115257 [18] Wang S, Liu J and Sun Q 2017 J. Mater. Chem. A 5 16936 [19] Zhuo Z, Dai K, Qiao R, Wang R, Wu J, Liu Y, Peng J, Chen L, Chuang Y D, Pan F, Shen Z X, Liu G, Li H, Devereaux T P and Yang W 2021 Joule 5 975 [20] Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B and Aurbach D 2018 Adv. Energy Mater. 8 1702397 [21] Zhan C, Cai F, Amine K and Lu J 2017 ACS Energy Lett. 2 1628 [22] Li X, Li X, Monluc L, Chen B, Tang M, Chien P H, Feng X, Hung I, Gan Z, Urban A and Hu Y Y 2022 Adv. Energy Mater. 12 2200427 [23] Wang C, Yang C and Zheng Z 2022 Adv. Sci. 9 2105213 [24] He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X and Peng D L 2021 Adv. Mater. 33 2005937 [25] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H and Chen L 2013 Adv. Energy Mater. 3 1358 [26] He P, Yu H and Zhou H 2012 J. Mater. Chem. 22 3680 [27] Li S, Fu X, Liang Y, Wang S, Zhou X a, Dong H, Tuo K, Gao C and Cui X 2020 ACS Sustainable Chem. Eng. 8 9311 [28] Mukai K, Uyama T and Yamada I 2019 ACS Omega 4 6459 [29] Cheng H, Li Y C, Li G and Li X D 2016 Chin. Phys. Lett. 33 096104 [30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [31] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [32] Tamura T, Ohwaki T, Ito A, Ohsawa Y, Kobayashi R and Ogata S 2012 Modelling and Simulation in Materials Science and Engineering 20 045006 [33] Oertel M, Hempel M, Klähn T and Typel S 2017 Rev. Mod. Phys. 89 015007 [34] Boulineau A, Croguennec L, Delmas C and Weill F 2009 Chem. Mater. 21 4216 [35] Chen H and Islam M S 2016 Chem. Mater. 28 6656 [36] Pulido R, Naveas N, Martín-Palma J R, Graber T, Brito I, Hernández-Montelongo J and Manso Silván M 2022 Chem. Eng. J. 441 136019 [37] Huang Y, He Y, Sheng H, Lu X, Dong H, Samanta S, Dong H, Li X, Kim D Y and Mao H K 2019 Nat. Sci. Rev. 6 239 [38] Xiao R, Li H and Chen L 2012 Chem. Mater. 24 4242 [39] Xie Z, Wu X, Zhang Y, Li G, Ma F, Yan W, Chen Y, Li F and Zhou M 2022 Journal of Electroanalytical Chemistry 922 116762 [40] Jiang Y S, Yu F D, Que L F, Deng L, Xia Y, Ke W, Han Y and Wang Z B 2021 ACS Energy Lett. 6 3836 [41] Serrano-Sevillano J, Carlier D, Saracibar A, Lopez del Amo J M and Casas-Cabanas M 2019 Inorg. Chem. 58 8347 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|