Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 125205    DOI: 10.1088/1674-1056/acc0f8
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical simulation study of ionization characteristics of argon dielectric barrier discharge

Guiming Liu(刘桂铭)1, Lei Chen(陈雷)1,†, Zhibo Zhao(赵智博)2, and Peng Song(宋鹏)2
1 Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System, Shenyang Aerospace University, Shenyang 110136, China;
2 College of Mechanical and Electrical Engineering, Dalian Minzu University, Dalian 116600, China
Abstract  In order to better analyze the characteristics of particle distribution and its influencing factors in the ionized space during the process of coaxial dielectric barrier discharge, a self-designed two-dimensional axisymmetric structure exciter was used to carry out optical diagnosis, with the electron temperature calculated through Gaussian fitting. A plasma model was applied to conduct research on the discharge process through numerical simulation, with the changes in electron density and electron temperature were analyzed by using different discharge parameters. The research results show that with an increase in discharge voltage, pressure inside the reactor and relative permittivity, the discharge process is promoted. In addition, a rise in current density leads to an increase in the number of charged particles on the surface of the medium during the discharge process, while a rise in discharge intensity causes an increase in the electron density. Electron temperature decreases due to the increased loss of collision energy between particles. These results were confirmed by comparing experimental data with simulation results.
Keywords:  dielectric barrier discharge      particle distribution properties      electron density      electron temperature  
Received:  17 January 2023      Revised:  28 February 2023      Accepted manuscript online:  03 March 2023
PACS:  52.80.Tn (Other gas discharges)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51509035 and 51409158), the Project of Shenyang Science and Technology Bureau (Grant No.RC200010), and the National Natural Science Foundation of Liaoning Province of China (Grant No.2020-KF-13-03).
Corresponding Authors:  Lei Chen     E-mail:  chenlei@sau.edu.cn

Cite this article: 

Guiming Liu(刘桂铭), Lei Chen(陈雷), Zhibo Zhao(赵智博), and Peng Song(宋鹏) Numerical simulation study of ionization characteristics of argon dielectric barrier discharge 2023 Chin. Phys. B 32 125205

[1] Mustafa A, Lougou B G, Shuai Y, Wang Z J and Tan H P 2020 Journal of Energy Chemistry. 49 96
[2] Kogelschatz U 2003 Plasma Chemistry and Plasma Processing 23 1
[3] Zhang Y T, Wang D Z and Wang Y H 2005 Phys. Plasmas 12 103508
[4] Wang X X 2009 High Volatage Engineering 34 1
[5] Na N, Zhao M, Zhang S, Yang C D and Zhang X R 2007 Journal of the American Society for Mass Spectrometry 18 1859
[6] Kogelschatz U 2003 Plasma Chemistry and Plasma Processing 23 1
[7] Massine F and Gouda G A 1999 J. Phys. D Appl. Phys. 31 3411
[8] Li X, Zhang Q, Chu J, Li J and Jia P 2017 High Voltage Engineering. 43 1880
[9] Ding X and Duan Y 2015 Mass Spectrometry Reviews 34 449
[10] Roth J R 2003 Phys. Plasmas 10 2117
[11] Wu Y and Li Y 2015 Acta Aeronautica et Astronautica Sinica 36 381
[12] Saifutdinova A A, Timerkaev B A and Saifutdinov A I 2019 J. Phys. Conf. Series 1328 012082
[13] Judée F, Merbahi N, Wattieaux G and Yousfi M 2016 J. Appl. Phys. 120 114901
[14] Barkaoui G, Halima A B, Jomaa N, Charrada K and Yousfi M 2021 IEEE Transactions on Plasma Science 49 1302
[15] Bai C, Wang L, Li L, Dong X, Xiao Q, Liu Z, Sun J and Pan J 2019 AIP Advances 9 035023
[16] Wang J, Lei B, Li J, Xu Y, Wang Y, Tang J, Zhao W and Duan Y 2020 Phys. Plasmas 27 043501
[17] Wang C, Yao C, Chang Z and Zhang G 2019 Phys. Plasmas 26 123506
[18] Saifutdinova A A, Timerkaev B A and Saifutdinov A I 2019 J. Phys. Conf. Series 1328 012082
[19] Stenzel R L 1988 Phys. Rev. Lett. 60 704
[20] Shi J J amd Kong M G 2005 Appl. Phys. Lett. 87 201501
[21] Chirokov A, Khot S N, Gangoli S P, Fridman1 A, Henderson P, Gutsol A F and Dolgopolsky A 2009 Plasma Sources Science & Technology 18 025025
[22] Hagelaar M and Pitchford C 2005 Plasma Sources Science and Technology 14 722
[23] Li P, Xu J, Chen Z and Xu G 2020 High Voltage Apparatus 56 173
[1] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[2] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[3] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[4] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[5] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[8] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[9] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[10] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[11] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[12] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[13] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[14] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[15] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
No Suggested Reading articles found!