CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Direct observation of the distribution of impurity in phosphorous/boron co-doped Si nanocrystals |
Dongke Li(李东珂)1,2,†, Junnan Han(韩俊楠)1,†, Teng Sun(孙腾)1, Jiaming Chen(陈佳明)1, Etienne Talbot3, Rémi Demoulin3, Wanghua Chen(陈王华)4,‡, Xiaodong Pi(皮孝东)2, Jun Xu(徐骏)1,§, and Kunji Chen(陈坤基)1 |
1 School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China; 2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 311200, China; 3 Univ Rouen Normandie, INSA Rouen Normandie, CNRS, GPM UMR 6634, F-76000 Rouen, France; 4 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community. In this study, atom probe tomography is performed to study the structures and distribution of impurity in phosphorous/boron co-doped Si nanocrystals/SiO2 multilayers. Compared with phosphorous singly doped Si nanocrystals, it is interesting to find that the concentration of phosphorous in co-doped samples can be significantly improved. Theoretical simulation suggests that phosphorous-boron pairs are formed in co-doped Si nanocrystals with the lowest formation energy, which also reduces the formation energy of phosphorous in Si nanocrystals. The results indicate that co-doping can promote the entry of phosphorous impurities into the near-surface and inner sites of Si nanocrystals, which provides an interesting way to regulate the electronic and optical properties of Si nanocrystals such as the observed enhancement of conductivity and sub-band light emission.
|
Received: 01 March 2023
Revised: 04 May 2023
Accepted manuscript online: 23 May 2023
|
PACS:
|
61.72.uf
|
(Ge and Si)
|
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
61.72.U-
|
(Doping and impurity implantation)
|
|
61.72.sh
|
(Impurity distribution)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200101), the National Natural Science Foundation of China (Grant Nos.62004078 and 61921005), Natural Science Foundation of Jiangsu Province (Grant No.BK20201073), Natural Science Foundation of Ningbo (Grant No.2021J068), ANR DONNA (Grant No.ANR-18-CE09-0034), and Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou (Grant No.TD2022012). This work was partially supported by the CNRS Federation IRMA-FR 3095. |
Corresponding Authors:
Wanghua Chen, Jun Xu
E-mail: chenwanghua@nbu.edu.cn;junxu@nju.edu.cn
|
Cite this article:
Dongke Li(李东珂), Junnan Han(韩俊楠), Teng Sun(孙腾), Jiaming Chen(陈佳明), Etienne Talbot, Rémi Demoulin, Wanghua Chen(陈王华), Xiaodong Pi(皮孝东), Jun Xu(徐骏), and Kunji Chen(陈坤基) Direct observation of the distribution of impurity in phosphorous/boron co-doped Si nanocrystals 2023 Chin. Phys. B 32 126102
|
[1] Hao H, Zhao Y, Song T, Wang X, Li C, Li W and Shen W 2021 Nanotechnology 32 505611 [2] Fujii M, Fujii R, Takada M and Sugimoto H 2020 Acs Appl. Nano Mater. 3 6099 [3] Cao Y Q, Zhu P, Li D K, Zeng X H and Shan D 2020 Energies 13 4845 [4] Tan H, Ni Z Y, Peng W B, Du S C, Liu X K, Zhao S Y, Li W, Ye Z, Xu M S, Xu Y, Pi X D and Yang D R 2018 Nano Energy 52 422 [5] Wang J, Ye D X, Liang G H, Chang J, Kong J L and Chen J Y 2014 J. Mater. Chem. B 2 4338 [6] Ni Z Y, Zhou S, Zhao S Y, Peng W B, Yang D R and Pi X D 2019 Mater. Sci. Eng. R 138 85 [7] Li D, Xu J, Zhang P, Jiang Y and Chen K 2018 J. Phys. D-Appl. Phys. 51 233002 [8] Sugimoto H, Yamamura M, Fujii R and Fujii M 2018 Nano Lett. 18 7282 [9] Marri I, Degoli E and Ossicini S 2017 Prog. Surf. Sci. 92 375 [10] Oliva-Chatelain B L, Ticich T M and Barron A R 2016 Nanoscale 8 1733 [11] Ni Z Y, Pi X D, Cottenier S and Yang D R 2017 Phys. Rev. B 95 075307 [12] Nomoto K, Sugimoto H, Ceguerra A V, Fujii M and Ringer S P 2020 Nanoscale 12 7256 [13] Lu P, Mu W, Xu J, Zhang X, Zhang W, Li W, Xu L and Chen K 2016 Sci. Rep. 6 22888 [14] Li D, Jiang Y, Liu J, Zhang P, Xu J, Li W and Chen K 2017 Nanotechnology 28 475704 [15] Pi X D, Gresback R, Liptak R W, Campbell S A and Kortshagen U 2008 Appl. Phys. Lett. 92 123102 [16] Li D, Chen J, Sun T, Zhang Y, Xu J, Li W and Chen K 2022 Opt. Express 30 12308 [17] Kramer N J, Schramke K S and Kortshagen U R 2015 Nano Lett. 15 5597 [18] Chen J, Li D, Zhang Y, Jiang Y, Xu J and Chen K 2020 Appl. Surf. Sci. 529 146971 [19] Jiang Y, Li D, Xu J, Li W and Chen K 2018 Appl. Surf. Sci. 461 66 [20] Zhang P, Li S, Li D, Ren L, Qin Z, Jiang L and Xu J 2023 Opt. Laser Technol. 157 108706 [21] Chen J, Li D, Sun T, Han J, Wang L, Zhang Y, Xu J and Chen K 2022 Opt. Mater. Express 12 4096 [22] Lu P, Li D, Zhang P, Tan D, Mu W, Xu J, Li W and Chen K 2016 Opt. Mater. Express 6 3233 [23] Qian M, Shan D, Ji Y, Li D, Xu J, Li W and Chen K 2016 Nanoscale Res. Lett. 11 346 [24] Li D, Jiang Y, Zhang P, Shan D, Xu J, Li W and Chen K 2017 Appl. Phys. Lett. 110 233105 [25] Shan D, Ji Y, Li D, Xu J, Qian M, Xu L and Chen K 2017 Appl. Surf. Sci. 425 492 [26] Fukata N 2009 Adv. Mater. 21 2829 [27] Li D, Chen J, Xue Z, Sun T, Han J, Chen W, Talbot E, Demoulin R, Li W, Xu J and Chen K 2023 Appl. Surf. Sci. 609 155260 [28] Nomoto K, Sugimoto H, Breen A, Ceguerra A V, Kanno T, Ringer S P, Wurfl I P, Conibeer G and Fujii M 2016 J. Phys. Chem. C 120 17845 [29] Hori Y, Kano S, Sugimoto H, Imakita K and Fujii M 2016 Nano Lett. 16 2615 [30] Guerra R and Ossicini S 2014 J. Am. Chem. Soc. 136 4404 [31] Slater J C 1964 J. Chem. Phys. 41 3199 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|